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Abstract The problem of metastability for a stochastic dynamics with a parallel updat-
ing rule is addressed in the Freidlin–Wentzel regime, namely, finite volume, small mag-
netic field, and small temperature. The model is characterized by the existence of many
fixed points and cyclic pairs of the zero temperature dynamics, in which the system can be
trapped in its way to the stable phase. Our strategy is based on recent powerful approaches,
not needing a complete description of the fixed points of the dynamics, but relying on few
model dependent results. We compute the exit time, in the sense of logarithmic equivalence,
and characterize the critical droplet that is necessarily visited by the system during its ex-
cursion from the metastable to the stable state. We need to supply two model dependent
inputs: (1) the communication energy, that is the minimal energy barrier that the system
must overcome to reach the stable state starting from the metastable one; (2) a recurrence
property stating that for any configuration different from the metastable state there exists
a path, starting from such a configuration and reaching a lower energy state, such that its
maximal energy is lower than the communication energy.
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1 Introduction

Metastable states are very common in nature and are typical of systems close to a first order
phase transition. It is often observed that a system can persist for a long period of time in
a phase which is not the one favored by the thermodynamic parameters; classical examples
are the super-saturated vapor and the magnetic hysteresis. The rigorous description of this
phenomenon in the framework of well defined mathematical models is relatively recent,
dating back to the pioneering paper [3], and has experienced substantial progress in the last
decade. See [12] for a list of the most important papers on this subject.

A natural setup in which the phenomenon of metastability can be studied is that of
Markov chains, or Markov processes, describing the time evolution of a statistical mechan-
ical system. Think for instance to a stochastic lattice spin system. In this context powerful
theories (see [2, 9, 11]) have been developed with the aim to find answers valid with maximal
generality and to reduce to a minimum the number of model dependent inputs necessary to
describe the metastable behavior of the system. Whatever approach is chosen, the key model
dependent question is the computation of the minimal energy barrier, called communication
energy, to be overcome by a path connecting the metastable to the stable state. Such a prob-
lem is in general quite complicated and becomes particularly difficult when the dynamics
has a parallel character. Indeed, if simultaneous updates are allowed on the lattice, then no
constraint on the structure of the trajectories in the configuration space is imposed. There-
fore, to compute the communication energy, one must take into account all the possible
transitions in the configuration space.

The problem of the computation of the communication energy in a parallel dynamics
setup has been addressed in [4, 5]. In particular, in [5] the typical questions of metastabil-
ity, that is the determination of the exit time and of the exit tube, have been answered for
a reversible Probabilistic Cellular Automaton (see [6, 8, 10, 13–15]), in which each spin
is coupled only with its nearest neighbors. In that paper it has been shown that, during the
transition from the metastable minus state to the stable plus state, the system visits an inter-
mediate chessboard-like phase. In the present paper we study the reversible PCA in which
each spin interacts both with itself and with its nearest neighbors; the metastable behavior of
such a model has been investigated on heuristic and numerical grounds in [1]. The addition
of the self-interaction changes completely the metastability scenario; in particular we show
that the chessboard-like phase plays no role in the exit from the metastable phase.

Another very interesting feature of this model is the presence of a large number of fixed
points of the zero-temperature dynamics in which the system can be trapped. Following the
powerful approach of [9], we can compute the exit time avoiding a complete description of
the trapping states. However, we cannot describe the exit tube, i.e., the tube of trajectories
followed by the system during its exit from the metastable to the stable phase. The only
information on the exit path that we prove in this paper is the existence of a particular set
of configurations which is necessarily visited by the system during its excursion from the
metastable to the stable state. This set plays the role of the saddle configuration set, which
is usually introduced in the study of the metastable behavior of sequential dynamics.

According to the approach of [9], the model dependent ingredients that must be pro-
vided are essentially two: (1) the solution of the global variational problem for all the paths
connecting the metastable and the stable state, i.e., the computation of the communication
energy; (2) a sort of recurrence property stating that, starting from each configuration differ-
ent from the metastable and the stable state, it is possible to reach a configuration at lower
energy following a path with an energy cost strictly smaller than the communication energy.

To solve the global variational problem (see items 2 and 3 in Theorem 2.3), we obtain an
upper bound on the communication energy by exhibiting a path connecting the metastable
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state to the stable state whose maximal energy is equal to the communication energy. To
find the lower bound, we perform a partition of the configuration space, study the transitions
between configurations in these partitions, and reduce the computation to the optimal one
(see Fig. 8). To prove the recurrence property (see item 1 in Theorem 2.3), we have to face
the problem of the existence of a large number of fixed points of the dynamics. We solve
this problem by showing that, for each configuration different from the metastable state, it
is possible to find a path connecting it to the stable state, i.e., to the unique global minimum
of the energy, such that the energy along this path is strictly smaller than the communication
energy.

We finally give a brief description of the content of the paper. In Sect. 2 we define the
model and state our main result in Theorem 2.1. The proof of Theorem 2.1, based on the
model dependent results in Theorem 2.3 and on [9], is given in Sect. 2.8. Section 3 is devoted
to the proof of the estimates on the energy landscape stated in Theorem 2.3, namely, the
global variational problem (items 2 and 3) and the recurrence property (item 1). The proof
of items 2 and 3 relies on Proposition 3.2, which is proven in Sect. 4. The Appendix is
devoted to a brief review of results in [9].

2 Model and Results

In this section we introduce the basic notation, define the model, and state our main result. In
particular, Sects. 2.1–2.4 are devoted to the definition of the Probabilistic Cellular Automa-
ton which will be studied in the sequel. In Sect. 2.5 we state Theorem 2.1 with the results
on the metastable behavior of the system. In Sect. 2.6 we introduce the transition rates and
the zero temperature dynamics; in Sect. 2.7 we develop an heuristic argument on which the
proof of the theorem is based. In Sect. 2.8, finally, we prove Theorem 2.1.

2.1 The Lattice

The spatial structure is modeled by the two-dimensional finite square � := {0, . . . ,L − 1}2,
where L is a positive integer, with periodic boundary conditions; note that � is a torus. We
shall use the metric induced by the Euclidean distance on the flat torus. An element of � is
called a site. We use Xc := � \ X to denote the complement of X ⊂ �.

Let x ∈ �; we say that y ∈ � is a nearest neighbor of x if and only if the distance on the
torus of x from y is equal to 1. For X ⊂ �, we say that y ∈ Xc is an element of the external
boundary ∂X of X if and only if at least one of its nearest neighbors belongs to X; we let
also X := X ∪ ∂X be the closure of X. Two sets X,Y ⊂ � are said to be not interacting if
and only if for any x ∈ X and y ∈ Y their distance on the torus is larger or equal to

√
5.

Let x = (x1, x2) ∈ �; for �1, �2 positive integers we let Q�1,�2(x) be the collection of the
sites ((x1 + s1)modL, (x2 + s2)modL) for si = 0, . . . , xi + �i − 1 where i = 1,2. Roughly
speaking, Q�1,�2(x) is the rectangle on the torus of side lengths �1 and �2 drawn starting
from x and moving in the positive direction along the two coordinate axes. For � a positive
integer we let Q�(x) := Q�,�(x).

2.2 The Configuration Space

The single spin state space is given by the finite set {−1,+1}; the configuration space in
X ⊂ � is defined as SX := {−1,+1}X and considered equipped with the discrete topology
and the corresponding Borel σ algebra FX . The model and the related quantities that will
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be introduced later on will all depend on �, but since � is fixed it will be dropped from the
notation; in this spirit we let S� =: S and F� =: F .

Given a configuration σ ∈ S and X ⊂ �, we denote by σX the restriction of σ to X.
Let m be a positive integer and let X1, . . . ,Xm ⊂ � be pairwise disjoint subsets of �; for
σk ∈ SXk

, with k = 1, . . . ,m, we denote by σ1σ2 · · ·σm the configuration in SX1∪···∪Xm such
that (σ1σ2 · · ·σm)Xk

= σk for all k ∈ {1, . . . ,m}. Moreover, given σ ∈ S and x ∈ �, we de-
note by σx the configuration such that σx(x) = −σ(x) and σx(y) = σ(y) for y �= x. Let
x ∈ �, we define the shift �x acting on S by setting (�xσ)y := σy+x for all y ∈ � and
σ ∈ S .

Given a function f : S → R, if f ∈ FX we shall sometimes write f (σX) for f (σ). Let
f,g : S → S be two functions, we consider the product or composed function fg : S → S
such that fg(σ ) := f (g(σ )) for any σ ∈ S . We also let f 2 := ff and, for n a positive
integer, f n := ff n−1. We say that a configuration σ ∈ S is a fixed point for the map f :
S → S if and only if f (σ) = σ . Let σ ∈ S , consider the sequence f n(σ ) with n ≥ 1, if there
exists n′ such that f n(σ ) = f n′

(σ ) for any n ≥ n′, we then let f σ := f n′
σ .

2.3 The Model

Let β > 0 and h ∈ R such that |h| < 1 and 2/h is not integer. We consider the Markov chain
on S with transition matrix

p(σ,η) :=
∏

x∈�

px,σ (η(x)) ∀σ,η ∈ S (2.1)

where, for each x ∈ � and σ ∈ S , px,σ (·) is the probability measure on S{x} defined as
follows

px,σ (s) := 1

1 + exp {−2βs(Sσ (x) + h)} = 1

2

[
1 + s tanhβ (Sσ (x) + h)

]
(2.2)

with s ∈ {−1,+1} and

Sσ (x) :=
∑

y∈{x}
σ(y). (2.3)

The normalization condition px,σ (s)+px,σ (−s) = 1 is trivially satisfied. Note that px,·(s) ∈
F{x} for any x and s, that is the probability px,σ (s) for the spin at site x to be equal to s

depends only on the values of the five spins of σ inside the cross {x} centered at x.
Such a Markov chain on the finite space S is an example of reversible probabilistic

cellular automata (PCA), see [6, 8]. Let n ∈ N be the discrete time variable and let σn ∈ S
denote the state of the chain at time n; the configuration at time n+ 1 is chosen according to
the law p(σn, ·), see (2.1), hence all the spins are updated simultaneously and independently
at any time. Finally, given σ ∈ S we consider the chain with initial configuration σ0 = σ , we
denote with Pσ the probability measure on the space of trajectories, by Eσ the corresponding
expectation value, and by

τ σ
A := inf{t > 0 : σt ∈ A} (2.4)

the first hitting time on A ⊂ S . We shall drop the initial configuration from the notation (2.4)
whenever it is equal to −1, i.e., we shall write τA instead of τ

−1
A .
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2.4 The Stationary Measure and the Phase Diagram

The model (2.1) has been studied numerically in [1]; we refer to that paper for a detailed
discussion about its stationary properties. Here we simply recall the main features. It is
straightforward, see for instance [6, 8], that the PCA (2.1) is reversible with respect to the
finite volume Gibbs measure μ(σ) := exp{−H(σ)}/Z with Z := ∑

η∈S exp{−H(η)} and

H(σ) := Hβ,h(σ ) := −βh
∑

x∈�

σ(x) −
∑

x∈�

log cosh
[
β (Sσ (x) + h)

]
. (2.5)

In other words the detailed balance condition

p(σ,η) e−H(σ) = p(η,σ ) e−H(η) (2.6)

is satisfied for any σ,η ∈ S; hence, the measure μ is stationary for the PCA (2.1). In order
to understand its most important features, it is useful to study the related Hamiltonian. Since
the Hamiltonian has the form (2.5), we shall often refer to 1/β as to the temperature and to
h as to the magnetic field.

The interaction is short range and it is possible to extract the potentials; following [1] we
rewrite the Hamiltonian as

Hβ,h(σ ) =
∑

x∈�

Ux,β,h(σ ) − βh
∑

x∈�

σ(x) (2.7)

where Ux,β,h(σ ) = U0,β,h(�xσ), recall that the shift operator �x has been defined in
Sect. 2.2 and that periodic boundary are considered on �, and

U0,β,h(σ ) = −
∑

X⊂{0}
J|X|,β,h

∏

x∈X

σ(x). (2.8)

The six coefficients J0,β,h, . . . , J5,β,h are determined by using (2.5), (2.7), and (2.8). In the
case h = 0 only even values of |X| occur and we find that the pair interactions are ferromag-
netic while the four-spin interactions are not. For a more detailed discussion see [1].

The definition of ground state is not completely trivial in our model, indeed the Hamil-
tonian H depends on β . The ground states are those configurations on which the Gibbs
measure μ is concentrated when the limit β → ∞ is considered, so that they can be defined
as the minima of the energy

E(σ) := lim
β→∞

H(σ)

β
= −h

∑

x∈�

σ(x) −
∑

x∈�

|Sσ (x) + h|. (2.9)

Let X ⊂ S , if the energy E is constant on X , we shall misuse the notation by denoting by
E(X ) the energy of the configurations in X .

We first consider the case h = 0. Since E(σ) = −∑
x∈� |Sσ (x)|, it is obvious that there

exist the two minima +1,−1 ∈ S , with ±1(x) = ±1 for each x ∈ �, such that E(+1) =
E(−1) = −5|�|. For h �= 0 we have E(+1) = −|�|(h+|5+h|) and E(−1) = −|�|(−h+
| − 5 + h|); it is immediate to verify that E(+1) < E(−1) for h > 0 and E(−1) < E(+1)

for h < 0. We conclude that at h = 0 there exist the two ground states −1 and +1. At h > 0
the unique ground state is given by +1 and at h < 0 the unique ground state is given by −1.
The phase diagram at finite large β and h = 0 has been studied rigorously in [7].
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2.5 Metastable Behavior

We pose now the problem of metastability and state the related theorem on the exit time. In
this context, configurations with all the spins equal to minus one excepted those in rectan-
gular subsets of the lattice will play a key role. We then let

�±(σ ) := {x ∈ � : σ(x) = ±1} (2.10)

for any σ ∈ S; the set �+(σ ) will be called the support of σ . We say that σ ∈ S is a
rectangular droplet with side lengths � and m, with �,m integers such that 2 ≤ �,m ≤ L−2,
if and only if there exists x ∈ � such that either �+(σ ) = Q�,m(x) or �+(σ ) = Qm,�(x). We
say that σ ∈ S is a n-rectangular droplet with side lengths �1,m1, . . . , �n,mn, with n ≥ 1
an integer and �i,mi integers such that 2 ≤ �i,mi ≤ L − 2 for i = 1, . . . , n, if and only if
�+(σ ) is the union of n pairwise not interacting rectangles (see Sect. 2.1) with side lengths
�i and mi for i = 1, . . . , n. We finally say that σ ∈ S is a multi-rectangular droplet if and
only if σ is a n-rectangular droplet for some integer n ≥ 1. Note that a 1-rectangular droplet
is indeed a rectangular droplet. Square droplets are defined similarly.

Consider, now, the model (2.1) with 0 < h < 1 and suppose that the system is prepared
in the state σ0 = −1; in the infinite time limit the system tends to the phase with positive
magnetization. We shall show that the minus one state is metastable in the sense that the
system spends a huge amount of time close to −1 before visiting +1; more precisely the
first hitting time τ+1 to +1 (recall (2.4) and the remark below) is an exponential random
variable with mean exponentially large in β .

Moreover, we give some information on the exit path that the system follows during the
escape from minus one to plus one. More precisely, we show that there exists a class of
configurations C ⊂ S , called set of critical droplets, which is visited with high probability
by the system during its escape from −1 to +1. Let the critical length λ be defined as

λ :=
⌊ 2

h

⌋
+ 1 (2.11)

where, for any positive real x, we denote by 
x� the integer part of x, i.e., the largest
integer smaller than or equal to x. Since h has been chosen such that 2/h is not integer, see
Sect. 2.3, we have that λ = 2/h + δh with δh ∈ (0,1). The set C is defined as the collection
of configurations with all the spins equal to −1 excepted those in a rectangle of sides λ − 1
and λ and in a pair of neighboring sites adjacent to one of the longer sides of the rectangle.

Given γ ∈ C we let


 := E(γ ) − E(−1) + 2(1 + h) = −4hλ2 + 16λ + 4h(λ − 2) + 2(1 + h). (2.12)

Note that by (2.12) and (2.11) it follows


 < 8λ + 10 − 2h. (2.13)

The simple bound above will be used in Sect. 3.2 to prove (3.25) and in Sect. 4.4.
As has been explained in the introduction, the energy of the configurations in C is strictly

connected to the typical exit time from the metastable state, indeed we have the following
theorem.

Theorem 2.1 For h > 0 small enough and L = L(h) large enough, we have that
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1. for any ε > 0

lim
β→∞ P−1(e

β
−βε < τ+1 < eβ
+βε) = 1 (2.14)

2.

lim
β→∞

1

β
log E−1[τ+1] = 
 (2.15)

3.

lim
β→∞ P−1(τC < τ+1) = 1. (2.16)

In other words, the above theorem states that the random variable (1/β) log τ+1 converges
in probability to 
 as β → ∞ and that the logarithm of the mean value of τ+1 divided times
β converges to 
 in the same limit. Moreover, the last item ensures that, before reaching the
stable state +1, the system started at −1 must necessarily visit the set of critical droplets C.

The proof of Theorem 2.1 will be given in Sect. 2.8. We note that, as usual in Proba-
bilistic Cellular Automata (see also [5]), the highest energy 
 reached along the exit path
is not achieved in a configuration, which is the typical situation in Glauber dynamics. Such
a 
 is the transition energy (see definition (2.18)) of the jump from the “largest subcrit-
ical” configuration to the “smallest supercritical” one, see also the heuristic discussion in
Sect. 2.7.

2.6 Transition Rate and Zero Temperature Dynamics

In our problem (see also [5]) the energy difference between two configurations σ and η is not
sufficient to establish whether the system prefers to jump from σ to η or vice versa. Indeed,
for some pairs of configurations a sort of barrier is seen in both directions; more precisely,
it is possible to find σ and η such that both p(σ,η) and p(η,σ ) tend to zero in the zero
temperature limit β → ∞. As an example of such a behavior, consider the two following
configurations: σ is such that all the spins are equal to minus one excepted those associated
with the sites belonging to an �×� rectangle, with 3 ≤ � ≤ L−2, and to a two-site protuber-
ance attached to one of the sides of the rectangle; η is a configuration obtained starting from
σ and flipping the spin associated with one of the sites neighboring both the rectangle and
the protuberance. By using (2.1)–(2.3), it is easy to show that p(σ,η) ∼ exp{−2β(1 − h)}
and p(η,σ ) ∼ exp{−2β(1 + h)} for large β; see also Fig. 1, where we have reproduced the
table in [1, Fig. 1] with the list of the single site event probabilities. In that figure, the large
β behavior of the probability, associated to the flip of the spin at the center, is computed.

To manage those barriers we associate the transition Hamiltonian H(σ,η) to each pair
of configurations σ,η ∈ S . More precisely we extend the Hamiltonian (2.5) to the function
H : S ∪ S × S → R so that

H(σ,η) := H(σ) − logp(σ,η). (2.17)

By the detailed balance principle (2.6), we have H(σ,η) = H(η,σ ) for any σ,η ∈ S . Note
that, by definition, H(σ,η) ≥ max{H(σ),H(η)} and p(σ,η) = exp{−[H(σ,η) − H(σ)]};
it is then reasonable to think to H(σ,η) as to the Hamiltonian level reached in the transition
from σ to η. As already noted in Sect. 2.4, since the Hamiltonian depends on β , it is useful
to compute its limiting behavior. We then define the transition energy

E(σ,η) := lim
β→∞

1

β
H(σ,η). (2.18)
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Fig. 1 Large β behavior of the probabilities for the flip of the central spin for all possible configurations in
the 5-spin neighborhood

Note that by using (2.9), (2.17), and the symmetry of the transition hamiltonian, we get

E(σ,η) = E(η,σ ) and E(σ,η) = E(σ) + �(σ,η) ≥ max{E(σ),E(η)} (2.19)

for any σ,η ∈ S , with

�(σ,η) := − lim
β→∞

1

β
logp(σ,η) =

∑

x∈�:
η(x)(Sσ (x)+h)<0

2|Sσ (x) + h| ≥ 0 (2.20)

the transition rate; notice that in the second equality we have used the definition (2.9) of
E(σ), (2.17), (2.1), and (2.2).

The non-negative transition rate � will play a crucial role in the study of the low temper-
ature dynamics of the model (2.1); indeed it can be proven that the model satisfies the FW
condition in [12, Chapter 6], that is for any σ,η ∈ S and β > 0 large enough

e−β�(σ,η)−βγ (β) ≤ p(σ,η) ≤ e−β�(σ,η)+βγ (β) (2.21)

where γ (β) does not depend on σ,η and tends to zero in the limit β → ∞. From (2.21)
it follows that p(σ,η) → 1 for β → ∞ if and only if �(σ,η) = 0. On the other hand, if
�(σ,η) > 0, then p(σ,η) → 0 exponentially fast and with rate �(σ,η) in the limit β → ∞,
so that � can be interpreted as the cost of the transition from σ to η.

To get (2.21) we first prove that for β large enough
∣∣∣∣−

1

β
[H(σ,η) − H(σ)] + [E(σ,η) − E(σ)]

∣∣∣∣ ≤ e−β(1−h). (2.22)

The bound (2.21) shall follow easily from (2.22), (2.17), and the second equality in (2.19)
relating the transition energy to the transition rate. To prove (2.22) we note that by using
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(2.17), (2.1), (2.2), and (2.20) we get

1

β
[H(σ,η) − H(σ)] − [E(σ,η) − E(σ)] = 1

β

∑

x∈�

log(1 + e−2β|Sσ (x)+h|) (2.23)

indeed,

1

β
[H(σ,η) − H(σ)] − [E(σ,η) − E(σ)]

= 1

β

∑

x∈�

log(1 + e−2βη(x)[Sσ (x)+h) +
∑

x∈�:
η(x)(Sσ (x)+h)<0

2η(x)[Sσ (x) + h]

= 1

β

∑

x∈�: crη(x)(Sσ (x)+h)>0

log(1 + e−2βη(x)[Sσ (x)+h)

+ 1

β

∑

x∈�:
η(x)(Sσ (x)+h)<0

log(1 + e−2βη(x)[Sσ (x)+h) +
∑

x∈�:
η(x)(Sσ (x)+h)<0

2η(x)[Sσ (x) + h]

= 1

β

∑

x∈�:
η(x)(Sσ (x)+h)>0

log(1 + e−2βη(x)[Sσ (x)+h) + 1

β

∑

x∈�:
η(x)(Sσ (x)+h)<0

log(e+2βη(x)[Sσ (x)+h + 1)

yielding (2.23). The bound (2.22) follows once we note that log(1 + exp{−2β|Sσ (x) +
h|}) ≥ 0 for any x ∈ � and |Sσ (x) + h| ≥ 1 − h uniformly in σ ∈ S and x ∈ �, and choose
β ≥ (log |�|)/(1 − h).

We finally introduce the zero temperature dynamics. Consider a configuration σ ∈ S and
s ∈ {−1,+1}; since |h| < 1, from (2.2) it follows that the probability px,σ (s) tends either to
0 or to 1 in the limit β → ∞. Thus, due to the product structure of (2.1), given σ there exists
a unique configuration η such that p(σ,η) → 1 in the limit β → ∞. This configuration is
the one such that each spin η(x) is chosen so that px,σ (η(x)) → 1 for β → ∞. We introduce
the map T : S → S , called the zero temperature dynamics, which associates to each σ ∈ S
the unique configuration T σ such that p(σ,T σ) → 1 in the limit β → ∞.

Lemma 2.2 Given σ,η ∈ S , we have that �(σ,η) = 0 if and only if η = T σ .

Proof of Lemma 2.2. The lemma follows immediately by using the definition of the zero
temperature dynamics T and the remarks below (2.21). �

2.7 Stable States and Stable Pairs

The proof of Theorem 2.1, although mathematically complicated, relies on a very straight-
forward physical argument based on a careful description of the low temperature, i.e., large
β , dynamics. In this section we give an heuristic explanation of the exponential estimate
(2.14) for the exit time τ+1.

We introduce, first, the notion of stable configurations. If T σ = σ the configuration σ is
called stable; equivalently, we say that σ ∈ S is stable if and only if for any η ∈ S \ {σ } one
has p(σ,η) → 0 in the limit β → ∞. If σ is not stable and T 2σ = σ , we say that (σ,T σ)

is the stable pair associated to σ , equivalently we say that (σ,T σ) is a stable pair if and
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Fig. 2 Examples of stable states,
pluses and minuses are
represented respectively by grey
and white regions

only if p(σ,T σ) → 1 and p(T σ,σ ) → 1 in the limit β → ∞. Recall � is non-negative, by
(2.19) and Lemma 2.2, it follows

E(σ,T σ) = E(σ) and E(σ) ≥ E(T σ) (2.24)

for any σ ∈ S .
Note that a stable pair (σ, η) is a 2-cycle of the map T , indeed T σ = η and T η = σ . It is

easy to show that cycles longer than two do not exist for such a map. Suppose, by the way
of contradiction, that σ1, . . . , σn ∈ S , with n ≥ 3 integer, are such that σi �= σj for i �= j ,
T σi = σi+1 for i = 1, . . . , n − 1, and T σn = σ1. By the inequality in (2.24), it follows that
E(σ1) ≥ · · · ≥ E(σn) ≥ E(σ1), which implies E(σ1) = · · · = E(σn). This result, together
with the equality in (2.24) and (2.19), implies that �(σ1, σ2) = �(σ1, σn) = 0. Hence, by
recalling Lemma 2.2, we get T σ1 = σ2 and T σ1 = σn. By definition of the map T , we
finally get σn = σ2, which contradicts the hypothesis that σi �= σj for i �= j .

As mentioned above, our model is characterized by the presence of a large number of
stable configurations. Indeed, only those configurations in which there exists at least one
spin with a majority of opposite spins among its neighbors are not stable, see Fig. 1. All
the configurations in which each spin is surrounded by at least two spins of the same sign
are, instead, stable; some of the possible situations are shown in Fig. 2. In particular, notice
that plus squared rings plunged into the sea of minuses are stable states. This scenario is
complicated by the presence of stable pairs; some of them are depicted in Fig. 3. Notice,
in particular, the chessboards leaned to stable pluses regions. As we shall see in the sequel,
the stable pairs do not play any important role in the study of metastability in model (2.1).
We also recall that, in the case of a similar model studied in [5], due to the presence of such
pairs, the system was forced to visit an intermediate chessboard phase in its way from the
minus metastable phase to the stable plus phase.

We describe, now, the typical low temperature behavior of the dynamics. Suppose that
the initial condition is σ0 = σ ∈ S; at low temperature, with high probability, the system
follows the unique zero temperature trajectory

σ0 = σ, σ1 = T σ, σ2 = T σ1 = T 2σ, . . . , σt = T (T t−1σ) = T tσ, . . . .

Once the zero temperature trajectory ends up in a stable configuration, it remains there
forever. Different trajectories are observed with probability exponentially small in β .
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Fig. 3 Examples of stable pairs,
pluses and minuses are
represented respectively by grey
and white regions

We can now depict the typical behavior of the system at very low temperature. Recall the
definitions given in the last paragraph of Sect. 2.2. Starting from σ , the system will reach
in a time of order one either the stable configuration T σ or the stable pair associated to
T 2σ ; note that T σ and T 2σ are unique. After a time exponentially large in β , the chain will
depart from the stable configuration, or from the stable pair, and possibly reach a different
stable configuration, where it will remain for another exponentially long time. And so on.
It is then clear that, in the study of the low temperature dynamics, a key role is played by
stable configurations and stable pairs; indeed a large amount of the time of each trajectory
is spent there.

Among the large number of possible stable states, there are those configurations in which
the plus spins fill a rectangular region; recall the definition of rectangular droplets given at
the beginning of Sect. 2.5. In [1] it has been conjectured that those rectangular stable con-
figurations are the relevant ones for metastability. Moreover, there has been developed an
heuristic argument to show that λ, see (2.11), is the critical length in the sense explained be-
low. Rectangular droplets with smallest side length smaller or equal to λ− 1 are subcritical,
namely, starting from such a configuration the system visits −1 before +1 with probability
tending to one in the limit β → ∞. Rectangular droplets with smallest side length larger or
equal to λ are supercritical, namely, starting from such a configuration the system visits +1
before −1 with probability tending to one in the limit β → ∞.

We reproduce shortly the heuristic argument in [1, Section IV] yielding the above con-
clusions. Consider a square droplet of side length �; we shall identify the best growth and
shrinking mechanisms and, by comparing the related typical times, get the critical length.
First note that the configuration obtained by attaching a single site protuberance to one of
the sides of the droplet is not stable (see Fig. 1); it is needed at least a two-site protuber-
ance to get a stable configuration. The parallel dynamics allows the formation of a two-site
protuberance in one step; from Fig. 1 and the product structure of (2.1), it follows that the
typical time for this process is τone ∼ exp{4β(3 − h)}. On the other hand, the protuber-
ance can be formed in two consecutive steps: first a single site protuberance appears and,
then, one of the two minuses adjacent both to the square droplet and to the protuberance
is flipped. By using again the data in Fig. 1, we get that the typical time for the two-step
process is τtwo ∼ exp{2β(3 − h) + 4β(1 − h)}, where 2β(3 − h) is the cost of the first step
and 4β(1−h) is the sum of the costs paid in the second step to keep the single site protuber-
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Fig. 4 Shrinking mechanism

ance and to flip the adjacent spin. Clearly τtwo � τone for β large; hence, the most efficient
mechanism to produce a two-site protuberance is the two-step one.

The presence of a two-site protuberance is sufficient to ensure the growth of the droplet.
Indeed, noted that exp{2β(1 − h)} is the smallest typical time needed to leave a stable con-
figuration (see Fig. 1), we have that the side with the two-site protuberance is filled by pluses
via a sequence of �−2 flips of a minus spin with two neighboring pluses. Since each of those
flips happens with typical time of order exp{2β(1 − h)}, we conclude that the growth time
τgrowth is equal to τtwo.

For what concerns the shrinking mechanism, it is easy to show that the most efficient one
is the flipping of plus spins having two neighboring minuses (corner erosion). The shrinking
is then performed via a sequence of configurations as in Fig. 4, requiring the erosion of
� − 1 corner pluses and the final flipping of the unstable single site protuberance. Note
that the intermediate configurations, joining the starting � × � square droplet to the ending
single protuberance configuration, are stable; their lifetime, i.e., the typical time that must
be waited for to see the system performing a transition, is exp{2β(1 − h)} (see Fig. 1). It
follows that suitably long persistence in the � − 2 intermediate stable configurations must
be provided for in the most efficient shrinking path. The rate at which the entire process
occurs is thus estimated as the rate for one erosion, exp{−2β(1 + h)}, times the probability
that � − 2 further erosions occur within the lifetime exp{2β(1 − h)}, which is of order
[exp{−2β(1+h)} exp{2β(1−h)}]�−2. We then conclude that the shrinking time is estimated
as τshrinking ∼ exp{2β(1 + h) + (� − 2)[2β(1 + h) − 2β(1 − h)]}.

By comparing, finally, τshrinking and τgrowth, we get that growth is favored w.r.t. shrinking
if and only if � ≥ 
2/h� + 1. This remark strongly suggests that the length λ, defined in
(2.11), plays the role of the critical length for what concerns the metastable behavior of the
model.

We come, finally, to the heuristic argument suggesting the estimate (2.14) for the exit
time. It is reasonable to suppose that the exit path visits an increasing sequence of subcritical
rectangular droplets, whose side lengths differ at most by one. The highest energy along such
a path will be attained in the segment leading from the largest subcritical λ× (λ−1) droplet
to the smallest supercritical λ × λ droplet. More precisely, denote by π the configuration
obtained by attaching a single site protuberance to one of the two longer sides of the λ ×
(λ − 1) droplet and by γ the configuration obtained by flipping in π a minus spin adjacent
to the rectangle and neighboring the single site protuberance. Recall the discussion above
about the growth mechanism. It follows that the highest energy along the exit path must be
attained in the transition from π to γ , so that it is equal to E(π,γ ) (see (2.18)). It is then
reasonable to expect that the typical exit time is of order exp{β[E(π,γ ) − E(−1)]}. Using
the expression

E(ψ) − E(−1) = −4h�1�2 + 8(�1 + �2) (2.25)

for a rectangular droplet ψ ∈ S of side lengths �1 and �2, recall that in such a configuration
2 ≤ �1, �2 ≤ L − 2, it is an easy exercise to show that E(π,γ ) − E(−1) = 
, see (2.12).
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2.8 Escape Time

In this section we prove Theorem 2.1. The main ingredients will be the general results [9,
Theorem 4.1, 4.9, and 5.4], the solution of the model dependent variational problem (2.29),
i.e., the computation of the energy barrier between −1 and +1, and the recurrence estimate
(2.28). In [9] the theory has been developed with quite strict hypotheses on the dynamics,
see [9, equation (1.3)], nevertheless it can be shown that the same results hold in the present
setup, see the Appendix.

To state the estimates on the energy landscape we need few more definitions. A fi-
nite sequence of configurations ω = {ω1, . . . ,ωn} is called path with starting configura-
tion ω1 and ending configuration ωn; we let |ω| := n. We let � := SN\{0} be the col-
lection of all the possible paths. Given two paths ω and ω′, such that ω|ω| = ω′

1, we let
ω + ω′ := {ω1, . . . ,ω|ω|,ω′

2, . . . ,ω
′
|ω′ |}; note that |ω + ω′| = |ω| + |ω′| − 1. Given a path ω,

we define the height along ω as

�ω :=
{

E(ω1) if |ω| = 1
maxi=1,...,|ω|−1 E(ωi,ωi+1) otherwise.

(2.26)

Let A,A′ ⊂ S , we denote by �(A,A′) the set of all the paths ω ∈ � such that ω1 ∈ A

and ω|ω| ∈ A′, that is the set of paths starting from a configuration in A and ending in a
configuration in A′. The communication energy between A,A′ ⊂ S is defined as

�(A,A′) := min
ω∈�(A,A′)

�ω. (2.27)

If A = {σ }, we shall misuse the notation by writing �(σ,A′) instead of �({σ },A′) and
�(σ,A′) instead of �({σ },A′).

Theorem 2.3 Recall the definition of 
 in (2.12). Suppose that h > 0 is chosen small
enough. Then

1. for any σ ∈ S \ {−1}
�(σ,+1) − E(σ) < 
 (2.28)

2.

�(−1,+1) − E(−1) = 
 (2.29)

3. for each path ω = {ω1, . . . ,ωn} ∈ �(−1,+1) such that �ω − E(−1) = 
, there exists
i ∈ {2, . . . , n} such that ωi ∈ C and E(ωi−1,ωi) − E(−1) = 
.

Theorem 2.3 will be proved in Sect. 3. Recall Theorems A.1–A.3 and the definitions given
before them.

Proof of Theorem 2.1. By using the results discussed at the end of Sect. 2.4, we have Ss =
{+1}. We remark that, since Ss = {+1}, then for any σ ∈ S \ Ss we have E(+1) < E(σ);
this implies, together with (2.29) and (2.28), that Sm = {−1} and V−1 = 
. Finally, items 1
and 2 follow from Theorems A.1 and A.2, respectively.

Proof of item 3. By using item 3 in Theorem 2.3, we get that C is a gate for the transition
from −1 to +1. The item 3 in Theorem 2.1 follows from Theorem A.3. �
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3 The Recurrence Property and the Variational Problem

In this section we prove the energy landscape estimates stated in Theorem 2.3; in particular
the recurrence property (2.28) is proven in Sect. 3.1 and the variational problem (2.29) is
solved in Sect. 3.2. The proof of items 2 and 3 of Theorem 2.3 relies on Proposition 3.2,
which is stated in Sect. 3.2 and proven in Sect. 4.

We give few more definitions. Let σ ∈ S and x ∈ �, we say that the site x is sta-
ble (resp. unstable) w.r.t. σ if and only if σ(x)Sσ (x) > 0 (resp. σ(x)Sσ (x) < 0). Note
that the stable sites are those that are not changed by the zero temperature dynamics,
more precisely T σ(x) = σ(x) if and only if x is stable w.r.t. σ . Given σ ∈ S and k ∈
{−5,−3,−1,+1,+3,+5} we denote by �±

k (σ ) the collection of the sites x ∈ �±(σ ) such
that Sσ (x) = k, i.e.,

�±
k (σ ) := {x ∈ �±(σ ) : Sσ (x) = k} (3.1)

note that �+
−5(σ ) = ∅ and �−

+5(σ ) = ∅; moreover, we set

�±
≤k(σ ) := �±

−5(σ ) ∪ · · · ∪ �±
k (σ ) and �±

≥k(σ ) := �±
k (σ ) ∪ · · · ∪ �±

+5(σ ). (3.2)

Finally, given σ ∈ S , we denote by �+
s (σ ) (resp. �+

u (σ )) the collection of the sites x ∈ �

such that σ(x) = +1 and x is stable (resp. unstable) w.r.t. σ ; similarly we define �−
s (σ ) and

�−
u (σ ). By definition of stable and unstable sites we get that, for any σ ∈ S ,

�+
u (σ ) = �+

≤−1(σ ), �−
u (σ ) = �−

≥+1(σ ), �+
s (σ ) = �+

≥+1(σ ), and

�−
s (σ ) = �−

≤−1(σ ). (3.3)

3.1 The Recurrence Property

Equation (2.28) in Theorem 2.3 states that, for any configuration σ different from the
metastable state −1, it is possible to exhibit a path ω joining σ to the stable state +1, i.e.,
to the absolute minimum of the energy, such that �ω < E(σ) + 
. On the heuristic ground,
given σ ∈ S \ {−1}, there exists at least a plus spin; starting from such a plus it is possible
to build a supercritical λ × λ droplet of pluses paying an energy cost strictly smaller than
E(σ)+
. Indeed, by virtue of (2.29), starting from −1, the cost would be exactly 
. On the
other hand, starting from σ , no energy must be paid to get the first plus spin and the other
pluses of σ , if any, help the production of the supercritical droplet.

A rigorous proof needs the explicit construction of the path; such a path will firstly realize
the growth of a supercritical λ×λ square with σ as a background and then its growth towards
+1. More precisely, recall � is a squared torus, let L be its side length and 0 = (0,0) the
origin; recall the zero temperature dynamics mapping T defined in Sect. 2.6 and let σ ∈ S
be such that σ(x) = +1 for any x ∈ Q2,2(0). We define the path

�σ := �2 +
L∑

n=3

[�n + �n] (3.4)

where the paths �n, with n = 2, . . . ,L, and �n, with n = 3, . . . ,L, are constructed algorith-
mically.

We first describe informally the algorithms. The path �n starts from the configuration ξn

and ends in the configuration ψn+1. The configuration ξn is such that the square Qn,n(0) =
{0, . . . , n − 1} × {0, . . . , n − 1} is filled with pluses; the path �n fills with pluses the slice
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Q1,n(n,0) = {(n,0), . . . , (n,n − 1)}, adjacent to the square Qn,n(0), and produce ψn+1 in
which the rectangle Qn+1,n(0) is filled with pluses. Similarly, the path �n starts from the
configuration ψn and ends in the configuration ξn. The configuration ψn is such that the
rectangle Qn,n−1(0) = {0, . . . , n − 1} × {0, . . . , n − 2} is filled with pluses; the path �n

fills with pluses the slice Qn,1(0, n − 1) = {(0, n − 1), . . . , (n − 1, n − 1)}, adjacent to the
rectangle Qn,n−1(0), and produce ξn in which the square Qn,n(0) is filled with pluses.

Definition of �n. Let ξ 2 := σ , let n ∈ {2, . . . ,L − 1}, and suppose ξn is such that
ξn(x) = +1 for x ∈ Qn,n(0), then

1. set i = 1, ξn
i = ξn;

2. if T 2ξn
i = ξn

i then goto 3 else set i = i + 1 and ξn
i = T ξn

i−1 and goto 2;
3. if ξn

i (x) = +1 for all x ∈ Q1,n(n,0) then set ψn+1 = ξn
i and goto 7;

4. if Q1,n(n,0) ∩ �+
s (ξn

i ) �= ∅, then pick y, y ′ ∈ Q1,n(n,0) such that d(y, y ′) = 1,
ξn
i (y) = −1, and y ′ ∈ �+

s (ξn
i ), set i = i + 1, ξn

i (y) = +1, ξn
i (x) = T ξn

i−1(x) ∀x ∈
� \ {y} and goto 3;

5. if Q1,n(n,0) ∩ �+
u (ξn

i ) �= ∅, then pick y, y ′ ∈ Q1,n(n,0) such that d(y, y ′) = 1,
ξn
i (y) = −1, and y ′ ∈ �+

u (ξn
i ), set i = i + 1, ξn

i (y) = +1, ξn
i (y ′) = +1, ξn

i (x) =
T ξn

i−1(x) for any x ∈ � \ {y, y ′} and goto 3;
6. set i = i + 1, y = (n,0), ξn

i (y) = +1, ξn
i (x) = T ξn

i−1(x) for any x ∈ � \ {y} and
goto 3;

7. set hn = i, �n = {ξn
1 , . . . , ξn

hn
} and exit.

At step 2 the algorithm follows the zero temperature dynamics down to the stable pair
or to the stable state associated to ξn. At step 3 the algorithm checks if the slice Q1,n(n,0)

adjacent to the square Qn,n(0) is filled with pluses. In case of positive answer the algorithm
jumps to step 7 and exits. If the answer is negative, then the slice is filled with pluses at
steps 3–6 as follows: a minus adjacent to a stable plus is flipped (step 4); in absence of
stable pluses, a minus adjacent to an unstable plus is flipped (step 5). If the slice is filled
with minuses, then the spin associated to the site (n,0) is flipped (step 6).

Definition of �n. Let n ∈ {3, . . . ,L} and suppose ψn is such that ψn(x) = +1 for
x ∈ Qn,n−1(0), then

1. set i = 1, ψn
i = ψn;

2. if T 2ψn
i = ψn

i then goto 3 else set i = i + 1 and ψn
i = T ψn

i−1 and goto 2;
3. if ψn

i (x) = +1 for all x ∈ Qn,1(0, n − 1) then set ξn = ψn
i and goto 7;

4. if Qn,1(0, n − 1) ∩ �+
s (ψn

i ) �= ∅, then pick y, y ′ ∈ Qn,1(0, n − 1) such that
d(y, y ′) = 1, ψn

i (y) = −1, and y ′ ∈ �+
s (ψn

i ), set i = i + 1, ψn
i (y) = +1, ψn

i (x) =
T ψn

i−1(x) ∀x ∈ � \ {y} and goto 3;
5. if Qn,1(0, n − 1) ∩ �+

u (ψn
i ) �= ∅, then pick y, y ′ ∈ Qn,1(0, n − 1) such that

d(y, y ′) = 1, ψn
i (y) = −1, and y ′ ∈ �+

u (ψn
i ), set i = i + 1, ψn

i (y) = +1, ψn
i (y ′) = +1,

ψn
i (x) = T ψn

i−1(x) for any x ∈ � \ {y, y ′} and goto 3
6. set i = i + 1, y = (0, n), ψn

i (y) = +1, ψn
i (x) = T ψn

i−1(x) for any x ∈ � \ {y} and
goto 3;

7. set kn = i, �n = {ψn
1 , . . . ,ψn

kn
} and exit.

In the following lemma we summarize the main properties of the paths �n and �n de-
fined above. In particular in items 2 and 3 we state upper bounds on the energy levels reached
by those paths. We show that the addition of a slice of pluses to a rectangle of pluses can
result in a net increment of the energy only if the length of the added slice does not exceed
the critical length λ (see (2.11), (3.5), and (3.6)).
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Lemma 3.1 Let σ ∈ S be such that σ(x) = +1 for any x ∈ Q2,2(0), consider the path �σ

defined by (3.4). Then

1. for any n = 3, . . . ,L the configuration ψn is such that ψn(x) = +1 for all x ∈ Qn,n−1(0),
for any n = 3, . . . ,L the configuration ξn is such that ξn(x) = +1 for all x ∈ Qn,n(0), in
particular ξL = +1 and �L = {ξL};

2. for any n = 2, . . . ,L we have

E(ψn+1) − E(ξn) ≤ (8 − 4hn) ∨ 0 and ��n ≤ E(ξn) + 10 − 6h (3.5)

3. for any n = 3, . . . ,L we have

E(ξn) − E(ψn) ≤ (8 − 4hn) ∨ 0 and ��n ≤ E(ψn) + 10 − 6h (3.6)

4. we have

��σ − E(σ) ≤ 
 − 16(2 − h) (3.7)

where we recall 
 has been defined in (2.12).

Proof of Lemma 3.1. Item 1 is an immediate consequence of the algorithmic definition of
�σ . The proof of item 2 is similar to the proof of item 3.

Item 3. Let �n := {ψn
1 , . . . ,ψn

k , . . . ,ψn
kn

}, with kn ≥ k ≥ 1, such that ψn
i = T ψn

i−1 for
i = 2, . . . , k and ψn

k = T 2ψn
k ; note that by construction ψn

1 = ψn, ψn
kn

= ξn, and kn − k ≤ n.
By using (2.24), we get

�{ψn
1 ,...,ψn

k
} = E(ψn

1 ) and E(ψn
i ) ≥ E(ψn

i+1) (3.8)

for i = 1 . . . , k − 1. If kn = k, then (3.6) follows immediately from (3.8). In the case kn ≥
k + 1, we shall prove that

�{ψn
k
,ψn

k+1,...,ψn
kn

} ≤ E(ψn
k ) + 10 − 6h and E(ψn

kn
) − E(ψn

k ) ≤ (8 − 4hn) ∨ 0. (3.9)

The bounds (3.6) will then follow from (3.8) and (3.9).
We are then left with the proof of (3.9), which can be achieved by discussing the follow-

ing three cases.
Case 1. There exist y, y ′ ∈ Qn,1(0, n − 1) such that ψn

k (y) = −1, y ′ ∈ �+
s (ψn

k ). The
configuration ψn

k+1 is defined at the step 4 of the algorithm; it is immediate to see that all the
configurations ψn

i , with i = k + 1, . . . , kn, are indeed defined at the step 4. Then, by using
(2.18), see also Fig. 1, we get the following bounds on the transition energies:

E(ψn
i ,ψn

i+1) ≤ E(ψn
i ) + 2(1 − h) and E(ψn

i+1,ψ
n
i ) ≥ E(ψn

i+1) + 2(1 + h) (3.10)

for any i = k, . . . , kn − 1. By using (3.10), (2.26), and (2.19) we get

�{ψn
k
,ψn

k+1,...,ψn
kn

} ≤ E(ψn
k ) + 2(1 − h) and E(ψn

kn
) − E(ψn

k ) ≤ −4h(kn − k) (3.11)

which, recalling kn ≥ k + 1, imply (3.9).
Case 2. There exist y, y ′ ∈ Qn,1(0, n − 1) such that ψn

k (y) = −1, ψn
k (y ′) = +1, and

�+
s (ψn

k ) ∩ Qn,1(0, n − 1) = ∅. The configuration ψn
k+1 is defined at the step 5 of the algo-

rithm; it is immediate to remark that all the configurations ψn
i , with i = k + 1, . . . , kn, are

instead defined at the step 4.
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Let i = k, . . . , kn − 1, let y, y ′ ∈ Qn,1(0, n − 1) be the two sites which are picked up by
the algorithm, let �i be the collection of the sites in Qn,1(0, n − 1) different from y, y ′ and
such that they become stable plus sites at this step of the path; more precisely, let �i :=
�+

s (ψn
i+1) \ (�+

s (ψn
i ) ∪ {y, y ′}). Note that the update of the sites in �i has no energy cost

since they follow the zero temperature dynamics T .
By using (2.18), see also Fig. 1, we get the estimates

E(ψn
k ,ψn

k+1) ≤ E(ψn
k ) + 4(1 − h) E(ψn

k+1,ψ
n
k ) ≥ E(ψn

k+1) + 2(1 + h)(1 + |�k|)
E(ψn

i ,ψn
i+1) ≤ E(ψn

i ) + 2(1 − h) E(ψn
i+1,ψ

n
i ) ≥ E(ψn

i+1) + 2(1 + h)(1 + |�i |)
(3.12)

for any i = k + 1, . . . , kn − 1. If |�i | = 0 for any i = k, . . . , kn − 1, then it must necessarily
be kn − k = n − 1. We get

�{ψn
k
,ψn

k+1,...,ψn
kn

} ≤ E(ψn
k ) + 4(1 − h) and E(ψn

kn
) − E(ψn

k ) ≤ 2 − 2h − 4h(n − 1).

(3.13)
Noted that 8 − 4hn = 2 − 2h − 4h(n − 1) + (6 − 2h), the bound (3.9) follows since h ≤ 3.
Suppose, finally, that there exists i ∈ {k, . . . , kn − 1} such that |�i | �= 0; hence

�{ψn
k
,ψn

k+1,...,ψn
kn

} ≤ E(ψn
k ) + 4(1 − h) and E(ψn

kn
) − E(ψn

k ) ≤ −4h(kn − k + 1). (3.14)

Recall kn ≥ k + 1; the bounds (3.14) imply (3.9) trivially.
Case 3. For each y ∈ Qn,1(0, n − 1) we have ψn

k (y) = −1. In this case kn − k = n, ψn
k+1

is defined at the step 6, ψn
k+2 is defined either at the step 4 or at the step 5, and ψn

k+i , with
i = 3, . . . , kn, are defined at the step 4 of the algorithm. By using (2.18), see also Fig. 1, we
get

E(ψn
k ,ψn

k+1) ≤ E(ψn
k ) + 2(3 − h) E(ψn

k+1,ψ
n
k ) ≥ E(ψn

k+1)

E(ψn
k+1,ψ

n
k+2) ≤ E(ψn

k+1) + 4(1 − h) E(ψn
k+2,ψ

n
k+1) ≥ E(ψn

k+2) + 2(1 + h)

E(ψn
i ,ψn

i+1) ≤ E(ψn
i ) + 2(1 − h) E(ψn

i+1,ψ
n
i ) ≥ E(ψn

i+1) + 2(1 + h)

(3.15)

for i = k + 2, . . . , kn − 1; see Fig. 5 for a graphical representation of the estimates (3.15).
Note that the equalities hold, for instance, in the case ψn

k (x) = −1 for any x ∈ ∂Qn,1(0, n −

Fig. 5 Graphical representation of the estimates (3.15)
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1) \ Qn,n−1(0). By using (3.15), (2.26), and (2.19) we get

�{ψn
k
,ψn

k+1,...,ψn
kn

} ≤ E(ψn
k )+10−6h and E(ψn

kn
)−E(ψn

k ) ≤ [8−4h(kn −k)] = 8−4hn

(3.16)
which imply (3.9).

We remark that in this case 3 the path {ψn
k , . . . ,ψn

kn
} realizes the standard growth of

the rectangular plus droplet ψn up to the square droplet ψn
kn

via the formation of a unit
plus protuberance in the slice adjacent to one of the longer sides of the rectangle and the
bootstrap percolation plus filling of the same slice.

Item 4. Let η,η′ two consecutive configurations of the path �σ , we shall prove that

E(η,η′) − E(σ) ≤ 
 − 16(2 − h). (3.17)

The bound (3.7) will then follow, see (2.26). Recall the critical length λ has been defined in
(2.11) and consider the following four cases.

Case 1. The configurations η,η′ belong to �n for some n ≤ λ − 1. This case is similar to
the case 2.

Case 2. The configurations η,η′ belong to �n for some n ≤ λ. By using (2.26), (3.5), and
(3.6) we have

E(η,η′) ≤ ��n ≤ E(ψn) + 10 − 6h

≤ E(ψn) − E(ξn−1) + E(ξn−1) − · · · − E(ψ3) + E(ψ3) − E(ξ 2) + E(ξ 2)

+ 10 − 6h

≤ E(σ) + 18 − 14h + 8
n−1∑

i=3

[2 − hi] ≤ E(σ) + 18 − 14h + 8
λ−1∑

i=3

[2 − hi]

where we have used that 2 − hi > 0 for i ≤ λ − 1 and ξ 2 = σ . The bound (3.17) follows
easily.

Case 3. The configurations η,η′ belong to �n for some n ≥ λ. Note that for n ≥ λ the
bounds (3.5) and (3.6) on the differences of energy become trivial since 8 − 4hn < 0, hence
E(ξn) ≤ E(ψλ). Then

E(η,η′) ≤ ��n ≤ E(ξn) + 10 − 6h ≤ E(ψλ) + 10 − 6h

where in the first inequality we used (2.26), in the second the bound (3.5), and in the last
the fact that E(ξn) ≤ E(ψλ). To get (3.17) we then perform the same computation as in the
case 2.

Case 4. The configurations η,η′ belong to �n for some n ≥ λ + 1. This case is similar to
the case 3. �

Proof of item 1 of Theorem 2.3. Let σ ∈ S \ {−1}. If σ = +1 the statement of the lemma
is trivial; we then suppose σ �= +1. Since by hypothesis σ �= −1, there exists x ∈ � such
that σ(x) = +1; without loss of generality we suppose σ(0) = +1. Consider the path ω :=
{σ,σ 1, σ 2, σ 3} with

– σ 1 is such that σ 1(x) = +1 for all x ∈ Q2,1(0) and σ 1(x) = T σ(x) for all x ∈ �\Q2,1(0);
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– σ 2 is such that σ 2(x) = +1 for all x ∈ Q2,1(0) ∪ Q1(0,1) and σ 2(x) = T σ 1(x) for all
x ∈ � \ [Q2,1(0) ∪ Q1(0,1)];

– σ 3 is such that σ 3(x) = +1 for all x ∈ Q2,2(0) and σ 3(x) = T σ 2(x) for all x ∈ � \
Q2,2(0).

By definition the path ω + �σ 3 starts at σ and ends in +1, i.e., ω + �σ 3 ∈ �(σ,+1), more-
over we shall prove that

�ω+�
σ3 < E(σ) + 
. (3.18)

Item 1 of Theorem 2.3 will then follow.
To prove (3.18) we first consider the path ω; by using (2.18), see also Fig. 1, we get the

following bounds on the transition energies:

E(σ,σ 1) ≤ E(σ) + 2 · 2(3 − h) E(σ 1, σ ) ≥ E(σ 1)

E(σ 1, σ 2) ≤ E(σ 1) + 2 · 2(1 − h) + 2(3 − h) E(σ 2, σ 1) ≥ E(σ 2)

E(σ 2, σ 3) ≤ E(σ 2) + 3 · 2(1 − h) E(σ 3, σ 2) ≥ E(σ 3) + 2(1 + h).

(3.19)

By using (3.19), (2.26), (2.19), (2.12), and the definition (2.11) of the critical length λ, it is
easy to show that

�ω − E(σ) ≤ 28 − 16h < 
 (3.20)

and

E(σ 3) − E(σ) ≤ 26 − 18h. (3.21)

We consider, now, the path �σ 3 ; by using (3.7) and (3.21), we get

��
σ3 −E(σ) = ��

σ3 −E(σ 3)+E(σ 3)−E(σ) ≤ 
−16(2−h)+26−18h = 
−2(3+h).

(3.22)
The inequality (3.18) follows from (3.20) and (3.22). �

3.2 The Variational Problem

Item 2 of Theorem 2.3 deals with the determination of the minimal energy barrier between
the metastable state −1 and the stable one +1, more precisely with the computation of
�(−1,+1). In the context of serial Glauber dynamics this problem has been faced with
different approaches each suited to the model under exam, see [12] and [9, Section 4.2],
where a quite general technique is described. All these methods rely on the continuity of the
dynamics, namely, on the property that at each step only one spin is updated.

In the case of parallel dynamics, see [5], the lacking of continuity increases the difficulty
of the computation of the communication energy between the metastable and the stable
state. We follow, here, the method proposed in [5] which is based on the construction of a
set G ⊂ S containing −1, but not +1, and on the evaluation of the transition energy for all
the possible transitions from the interior to the exterior of such a set G.

To define the set G we need to introduce the two mappings A,B : S → S . Let σ ∈ S , we
set Aσ := σ if E(σx) > E(σ) for any x ∈ �+

u (σ ), otherwise Aσ := σx where x is the first
element of �+

u (σ ) in lexicographic order. The map A flips the first, in lexicographic order,
unstable plus spin of σ to which corresponds a decrease of the energy. Under the effect of
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the map A the number of pluses decreases, but only unstable pluses are flipped. Let σ ∈ S ,
the configuration Bσ ∈ S is such that for each x ∈ �

Bσ(x) :=
{

−σ(x) if x ∈ �−
≥−1(σ )

σ (x) otherwise.
(3.23)

Note that the operator B performs a single step of bootstrap percolation; relatively to σ , it
flips all the minus unstable spins and, among the stable minus spins, only those with two
neighboring minuses.

In the sequel a relevant role will be played by the configuration B Aσ , for any σ ∈ S;
recall the definition of fixed point of a map given at the end of Sect. 2.2. The sole unsta-
ble positive spins in Aσ are those corresponding to energy increasing flips. Starting from
Aσ , the map B , which flips the minus spins with at least two plus spins among the near-
est neighbors, is applied iteratively until a fixed point is reached. It is easy to show that
the pluses in such a fixed point form well separated rectangles or stripes winding around
the torus; more precisely, the pluses in B Aσ occupy the region

⋃n

i=1 Q�i,1,�i,2(xi) ⊂ �,
where n, �1,1, �1,2, . . . , �n,1, �n,2 are positive integers and xi ∈ � for any i = 1, . . . , n, with
Q�i,1,�i,2(xi) being pairwise not interacting (see Sect. 2.1). Note that, depending on the val-
ues of �i,1, �i,2, the set Q�i,1,�i,2(xi) can be either a rectangle or a stripe winding around the
torus.

We can now define the set G. Let σ ∈ S , consider B Aσ , and, provided B Aσ �= −1, de-
note by Q�i,1,�i,2(xi) the collection of pairwise not interacting rectangles (or stripes) obtained
by collecting all the sites y ∈ � such that B Aσ(y) = +1. We say that σ ∈ G if and only if
B Aσ = −1 or min{�i,1, �i,2} ≤ λ − 1 and max{�i,1, �i,2} ≤ L − 2 for any i = 1, . . . , n. Note
that configurations σ such that B Aσ contains plus stripes winding around the torus � do
not belong to G.

In general T σ �= B Aσ , this means that B Aσ is not necessarily the result of the zero tem-
perature dynamics started at σ . This is not a problem when looking for the minimal energy
barrier between −1 and +1, provided the energy of such configurations is larger than 
. The
definition of G is indeed satisfactory because we can prove the following Proposition 3.2 on
which the proof of items 2 and 3 of Theorem 2.3 is mostly based. To state the lemma we
need one more definition: recall the set C is defined as the collection of configurations with
all the spins equal to −1 excepted those in a rectangle of sides λ − 1 and λ and in a pair of
neighboring sites adjacent to one of the longer sides of the rectangle. Then, given γ ∈ C, we
let π(γ ) ⊂ S the set whose elements are the two configurations that can be obtained from
γ by flipping one of the two plus spins in the pair attached to one of the longer sides of the
plus spin λ× (λ− 1) rectangle. We also let P be the collection of all the configurations with
all the spins equal to −1 excepted those in a rectangle of sides λ − 1 and λ and in a single
site adjacent to one of the longer sides of the rectangle. Finally, we let R be the collection
of rectangular droplets with sides λ − 1 and λ. By using (2.25), we have

E(R) − E(−1) = −4hλ2 + 4hλ + 16λ − 8 = 
 − 10 + 6h (3.24)

where we have used in the last equality the definition (2.12) of 
. By using (2.13), we have
the easy bound

E(R) − E(−1) < 8λ + 4h (3.25)

Proposition 3.2 With the definitions above, for h > 0 small enough and L = L(h) large
enough, we have
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1. −1 ∈ G, +1 ∈ S \ G, and C ⊂ S \ G;
2. for each η ∈ G and ζ ∈ S \ G we have E(η, ζ ) ≥ E(−1) + 
;
3. for each η ∈ G and ζ ∈ S \ G we have E(η, ζ ) = E(−1) + 
 if and only if ζ ∈ C and

η ∈ π(ζ ).

Proof of item 2 of Theorem 2.3. Since −1 ∈ G and +1 ∈ S \G, see item 1 in Proposition 3.2,
we have that any path ω = {ω1, . . . ,ωn} such that ω1 = −1 and ωn = +1 must necessarily
contain a transition from G to S \G, i.e., there must be i ∈ {2, . . . , n} such that ωi−1 ∈ G and
ωi ∈ S \ G. Thus, item 2 in Proposition 3.2 implies that �ω ≥ E(−1) + 
; since the path ω

is arbitrary, it follows that

�(−1,+1) ≥ E(−1) + 
. (3.26)

To complete the proof of (2.29) we need to exhibit a path connecting −1 to +1 such
that the height along such a path is less than or equal to E(−1) + 
. Consider the path ω :=
{−1, σ 1, σ 2, σ 3, σ 4} with σ 1 the configuration with all the spins equal to minus one excepted
the one at the origin, σ 2 the configuration with all the spins equal to minus one excepted the
ones associated to the sites in the rectangle Q2,1(0), σ 3 the configuration with all the spins
equal to minus one excepted the ones associated to the sites in Q2,1(0) ∪ Q1(0,1), and σ 4

the configuration with all the spins equal to minus one excepted the ones associated to the
sites in the square Q2(0).

By definition, the path ω + �σ 4 starts at −1 and ends in +1, i.e., ω + �σ 4 ∈ �(−1,+1).
Moreover, we shall prove that

�ω+�
σ4 − E(−1) ≤ 
 (3.27)

The inequality (3.27), together with (3.26), implies (2.29).
We are then left with the proof of (3.27). We first consider the path ω; by using (2.18),

see also Fig. 1, we get

E(−1, σ 1) = E(−1) + 2(5 − h) E(σ 1,−1) = E(σ 1)

E(σ 1, σ 2) = E(σ 1) + 2 · 2(3 − h) E(σ 2, σ 1) = E(σ 2) + 2(1 − h)

E(σ 2, σ 3) = E(σ 2) + 2 · 2(1 − h) + 2(3 − h) E(σ 3, σ 2) = E(σ 3) + 2(1 − h)

E(σ 3, σ 4) = E(σ 3) + 3 · 2(1 − h) E(σ 4, σ 3) = E(σ 4) + 2(1 + h)

(3.28)

see Fig. 6 for a graphical representation.
By using (3.28), (2.26), (2.19), (2.12), and the definition (2.11) of the critical length λ, it

is easy to show that, provided h is chosen smaller than 3 + √
5,

�ω − E(−1) ≤ 34 − 14h < 
 (3.29)

and

E(σ 4) − E(−1) ≤ 32 − 16h. (3.30)

We consider, now, the path �σ 4 ; by using (3.7) and (3.30), we get

��
σ4 − E(−1) = ��

σ4 − E(σ 4) + E(σ 4) − E(−1) ≤ 
 − 16(2 − h) + 32 − 16h = 
.

(3.31)
The inequality (3.27) follows from (3.29) and (3.31). This completes the proof of item 2 of
Theorem 2.3. �
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Fig. 6 Energy landscape for the
path ω

Proof of item 3 of Theorem 2.3. The item follows from item 2 of Theorem 2.3 and item 3 of
Proposition 3.2. �

4 Proof of Proposition 3.2

In Sect. 4.4 we shall prove Proposition 3.2 concerning the solution of the minmax prob-
lem. Some preliminary lemmata are stated in advance. More precisely, in Sect. 4.1 we state
the Lemmata 4.1–4.4 concerning energy estimates for the maps A and B (see Sect. 3.2).
In Sect. 4.2 the Lemmata 4.5 and 4.6, concerning properties of rectangular droplets (see
Sect. 2.5), are stated. Sect. 4.3 is devoted to the comparison of configurations in G (see
Sect. 3.2) and in Gc.

4.1 Energy Estimates for the Maps A and B

In Lemma 4.1 we give estimates on the energy of the configurations obtained by applying
the maps A and B . For any σ ∈ S we let

NA(σ) :=
∑

x∈�

[1 − δσ(x),Aσ(x)] and NB(σ) :=
∑

x∈�

[1 − δAσ(x),B Aσ(x)] (4.1)

with δ the Kronecker δ. Note that NA(σ) is the number of plus spins which are flipped by
the iterative application of the map A to σ , while NB(σ) is the number of minus spins which
are flipped by the iterative application of the bootstrap percolation map B to Aσ .

Lemma 4.1 Let σ ∈ S and h > 0 small enough. Then

1. we have

E(σ) ≥ E(Aσ) + (2 − 10h)NA(σ) (4.2)

2. we have

E(Aσ) ≥ E(B Aσ) + 4hNB(σ). (4.3)
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In order to prove Lemma 4.1 we state Lemma 4.2 on some properties of unstable plus
spins and Lemma 4.3 concerning an energy estimate for a single application of the bootstrap
percolation map B . Recall (3.1), (3.2), and (3.3); recall also that, given σ ∈ S and x ∈ �,
the configuration σx has been defined in Sect. 2.2 as the one obtained by flipping the spin
of σ associated with the site x.

Lemma 4.2 Let σ ∈ S; for h > 0 small enough, we have that the following statements hold
true:

1. if there exists x ∈ �+
u (σ ) such that E(σx) > E(σ), then |∂{x} ∩ �−

s (σ )| ≤ 1, i.e., there
exists at most one nearest neighbor of x which is stable w.r.t. σ and such that the associ-
ated spin is minus one;

2. if there exists x ∈ �+
u (σ ) such that E(σx) ≤ E(σ), then E(σ) ≥ E(σx) + 2 − 10h;

3. if E(σx) > E(σ) for any x ∈ �+
u (σ ), then

2|�+
−1(σ )| + 3|�+

−3(σ )| ≤ 3|�−
+1(σ )| + 4|�−

+3(σ )|. (4.4)

Proof of Lemma 4.2. Let x ∈ �+
u (σ ), then σ(x) = +1, σx(x) = −1, and Sσ (x) < 0; by

using (2.9), we get

E(σx) − E(σ) = 2h − 2 +
∑

y∈∂{x}
(|Sσ (y) + h| − |Sσ (y) − 2 + h|). (4.5)

Note that, since σ(x) = +1, we have that Sσ (y), with y ∈ ∂{x}, can assume the values
−3,−1,+1,+3,+5; by performing the direct computations one shows that

|Sσ (y) + h| − |Sσ (y) − 2 + h| ∈ {−2,2h,+2} (4.6)

for y ∈ ∂{x}.
Item 1. Let x ∈ �+

u (σ ) such that E(σx) > E(σ); since Sσ (y) < 0 for y ∈ ∂{x} ∩ �−
s (σ ),

by using (4.5) we get

E(σx)−E(σ) = 2h− 2(1 +|∂{x}∩�−
s (σ )|)+

∑

y∈∂{x}\�−
s (σ )

(|Sσ (y)+h|− |Sσ (y)− 2 +h|).

Suppose, by the way of contradiction, that |∂{x} ∩ �−
s (σ )| ≥ 2, then we have

E(σx) − E(σ) ≤ 2h − 6 +
∑

y∈∂{x}\�−
s (σ )

(|Sσ (y) + h| − |Sσ (y) − 2 + h|).

By (4.6) we obtain |Sσ (y) + h| − |Sσ (y) − 2 + h| ≤ 2 for y ∈ ∂{x}, and, noting that
|∂{x} \ �−

s (σ )| ≤ 2, we finally get E(σx) − E(σ) ≤ 2h − 6 + 4 = 2h − 2 < 0, which is
in contradiction with the hypothesis.

Item 2. Let x ∈ �+
u (σ ) such that E(σx) ≤ E(σ). Recalling (4.5) and (4.6), we have that

the number of sites y ∈ ∂{x} such that |Sσ (y) + h| − |Sσ (y) − 2 + h| = +2 must be at
most equal to the number of sites y ∈ ∂{x} such that |Sσ (y) + h| − |Sσ (y) − 2 + h| = −2,
otherwise it would be E(σx)−E(σ) > 0. Thus, un upper bound to the sum in (4.5) is found
when all the y ∈ ∂{x} are such that |Sσ (y) + h| − |Sσ (y) − 2 + h| = 2h. We then get

∑

y∈∂{x}
(|Sσ (y) + h| − |Sσ (y) − 2 + h|) ≤ 2h|∂{x}| = 8h

from which E(σx) − E(σ) ≤ −2 + 10h follows.
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Item 3. Consider σ ∈ S such that E(σx) > E(σ) for any x ∈ �+
u (σ ) and let rσ (y) = 1 if

y ∈ �−
u and rσ (y) = 0 otherwise. Recall that �+

−5(σ ) = ∅ and recall (3.3); by exploiting the
first part of this lemma we get

∑

x∈�+
u (σ )

∑

y∈∂{x}
rσ (y) =

∑

x∈�+
−1(σ )

∑

y∈∂{x}
rσ (y) +

∑

x∈�+
−3(σ )

∑

y∈∂{x}
rσ (y) ≥ 2|�+

−1(σ )| + 3|�+
−3(σ )|.

On the other hand, a site in �−
+1(σ ) is nearest neighbor of at most three sites in �+

u , indeed
the number of unstable pluses neighboring such a site can be less than three since some of
the pluses can be stable ones, and a site in �−

+3(σ ) is nearest neighbor of at most four sites
in �+

u ; then we have

∑

x∈�+
u (σ )

∑

y∈∂{x}
rσ (y) ≤ 3|�−

+1(σ )| + 4|�−
+3(σ )|.

The inequality (4.4) follows trivially from the two bounds above. �

Lemma 4.3 Suppose h > 0 small enough. Let σ ∈ S , suppose E(σx) > E(σ) for any x ∈
�+

u (σ ). Then

E(σ) ≥ E(Bσ) + 4h|�−
≥−1(σ )|. (4.7)

Recall that �−
≥−1(σ ) is exactly the set of sites whose associated spin flips under the action

of the bootstrap percolation map B (see (3.23)).

Proof of Lemma 4.3. To compare E(σ) and E(Bσ) we shall use (2.19) and suitable bounds
on E(σ,Bσ) and E(Bσ,σ). Recall (2.18), see also Fig. 1, and the definition (3.23) of the
bootstrap percolation map B; we have that in the forward transition from σ to Bσ the energy
costs are those associated to the flip of the stable minuses with two neighboring pluses and
those associated to the permanence of the unstable pluses. More precisely, we have

E(σ,Bσ) = E(σ) + 2(1 − h)|�−
−1(σ )| + 2(1 − h)|�+

−1(σ )| + 2(3 − h)|�+
−3(σ )|. (4.8)

On the other hand, in the backward transition from Bσ to σ the energy costs that must be
surely paid are those associated to the reverse flipping of the pluses that have been created
in the forward transition; more precisely, we have

E(Bσ,σ) ≥ E(Bσ) + 2(1 + h)|�−
−1(σ )| + 2(3 + h)|�−

+1(σ )| + 2(5 + h)|�−
+3(σ )|. (4.9)

Note that in (4.9) it is not possible to take advantage from the permanence of the possible
unstable pluses in Bσ , because, as we shall see in the proof of item 2 of the Lemma 4.1, we
have �+

u (Bσ) = ∅.
To complete the proof we have to distinguish two cases. Suppose, first, that �+

−1(σ ) =
�−

+3(σ ) = ∅; by using (4.8), (4.9), and (2.19), we get

E(σ) ≥ E(Bσ) + 4h|�−
−1(σ )| − 2(3 − h)|�+

−3(σ )| + 2(3 + h)|�−
+1(σ )|.

The bound (4.7) follows noting that, in this case, �−
≥−1(σ ) = �−

−1(σ ) ∪ �−
+1(σ ) and (4.4)

reduces to |�+
−3(σ )| ≤ |�−

+1(σ )|. Suppose, now, that either �+
−1(σ ) �= ∅ or �−

+3(σ ) �= ∅. By
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using (4.4) we have

|�+
−1(σ )| + 3|�+

−3(σ )| ≤ 2|�+
−1(σ )| + 3|�+

−3(σ )|
≤ 3|�−

+1(σ )| + 4|�−
+3(σ )| ≤ 3|�−

+1(σ )| + 5|�−
+3(σ )|.

Since either |�+
−1(σ )| ≥ 0 or |�−

+3(σ )| ≥ 0, we have that

|�+
−1(σ )| + 3|�+

−3(σ )| < 3|�−
+1(σ )| + 5|�−

+3(σ )|. (4.10)

We shall prove that, provided h < 1,

(1 − h)|�+
−1(σ )| + (3 − h)|�+

−3(σ )| < (3 − h)|�−
+1(σ )| + (5 − h)|�−

+3(σ )|. (4.11)

First of all we note that the inequality (4.11) is equivalent to

h[|�−
+3(σ )| + |�−

+1(σ )| − |�+
−1(σ )| − |�+

−3(σ )|]
< |�−

+3(σ )| + |�−
+1(σ )| − |�+

−1(σ )| − |�+
−3(σ )| + [2|�−

+1(σ )| + 4|�−
+3(σ )|

− 2|�+
−3(σ )|]

which is trivially satisfied when the left hand side is negative or equal to zero, since (4.10)
implies that the right hand side is strictly positive; on the other hand, if the left hand side is
strictly positive, recalling that h < 1, the inequality will follow once we shall have proved
that 2|�−

+1(σ )| + 4|�−
+3(σ )| − 2|�+

−3(σ )| ≥ 0.
To get this last bound we note that by using item 1 in Lemma 4.2, it follows that for

each site belonging to �+
−3, there are at least three unstable minus spins among the four

nearest neighboring ones. Hence, we get |�−
u (σ )| ≥ (4/3)|�+

−3(σ )|. Moreover, noted that
|�−

u (σ )| = |�−
+1(σ )| + |�−

+3(σ )|, we also get

2|�−
+1(σ )| + 4|�−

+3(σ )| − 2|�+
−3(σ )|

= 2|�−
+3(σ )| + 2

[|�−
+1(σ )| + |�−

+3(σ )| − |�+
−3(σ )|]

= 2|�−
+3(σ )| + 2

[|�−
u (σ )| − |�+

−3(σ )|] ≥ 2
[|�−

+3(σ )| + 1/3|�+
−3(σ )|] ≥ 0.

Finally, the bound (4.7) follows easily by using (2.19), (4.8), (4.9), and the inequal-
ity (4.11). �

Proof of Lemma 4.1. Item 1. The bound (4.2) is proven easily by applying iteratively item 2
of Lemma 4.2.

Item 2. Suppose B Aσ = BnAσ for some integer n. We first note that by Lemma 4.2 each
site x ∈ �+

u (Aσ) has at least two neighboring minuses which are unstable w.r.t. Aσ , more
precisely |∂{x} ∩ �−

u (Aσ)| ≥ 2. Recall the definition (3.23) of the bootstrap percolation
map B; since �−

u (Aσ) ⊂ �−
≥−1(Aσ), the minuses in ∂{x} ∩ �−

u (Aσ) flip under the action
of B . Hence, |∂{x} ∩ �+(BAσ)| ≥ 2. We then have �+

u (BAσ) = ∅; in other words all the
unstable pluses in Aσ become stable after the application of a single step of the bootstrap
percolation.

By definition of the bootstrap percolation map we also have that �+
u (BiAσ) = ∅ for

any i = 2, . . . , n, i.e., no site in �+(BiAσ) is unstable w.r.t. BiAσ . Note, finally, that
E((Aσ)x) > E(Aσ) for any x ∈ �+

u (Aσ). The theorem then follows by applying iteratively
Lemma 4.3. �
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Let σ ∈ S , we refine the estimate (4.2) by considering the plus spins that are flipped by
the iterative application of the map A and are associated with sites outside the support of the
configuration B Aσ . Let the branch of σ be

L(σ) := |�+(σ ) \ �+(B Aσ)| (4.12)

i.e., the number of pluses outside the rectangles of B Aσ which are flipped by the map A;
note that L(σ) ≤ NA(σ) (see (4.1)).

Lemma 4.4 For any σ ∈ S such that L(σ) ≥ 1, we have that

E(σ) − E(Aσ) ≥
{

6 − 2h if L(σ) = 1

10 − 6h + (2 − 10h)(L(σ) − 2) if L(σ) ≥ 2.
(4.13)

Proof of Lemma 4.4. Let σ ∈ S such that L(σ) = 1, the set �+(σ )\�+(B Aσ) has a unique
element x. There exists a natural number j such that Aj−1σ(x) = +1 and Ajσ(x) = −1.
For y ∈ ∂{x} ∩ (�+(B Aσ))c we have |SAj σ (y) + h| − |SAj−1σ (y) + h| = 2, while for y ∈
∂{x} ∩ �+(B Aσ) we have the trivial bound |SAj σ (y) + h| − |SAj−1σ (y) + h| ≥ −2. Since
|∂{x} ∩ (�+(B Aσ))c| ≥ 3 and |∂{x} ∩ �+(B Aσ)| ≤ 1, by using (2.9) we get

E(Aj−1σ) − E(Ajσ) = 2 − 2h +
∑

y∈∂{x}∩(�+(B Aσ))c

(|SAj σ (y) + h| − |SAj−1σ (y) + h|)

+
∑

y∈∂{x}∩�+(B Aσ)

(|SAj σ (y) + h| − |SAj−1σ (y) + h|) ≥ 6 − 2h.

(4.14)

Recall, finally, that by definition the map A decreases the energy; then, by (4.14), we have

E(σ) ≥ E(Aj−1σ) ≥ E(Ajσ) − 2h + 6 ≥ E(Aσ) − 2h + 6

and the bound (4.13) follows.
Let now σ ∈ S such that L(σ) = 2; the set �+(σ ) \ �+(B Aσ) has two elements x, y.

Since B Aσ = B Aσy and L(σ) = 2, we have L(σy) = 1; by using Aσy = Aσ and (4.13) in
the already proven case we have that

E(σ) − E(Aσ) = E(σ) − E(σy) + E(σy) − E(Aσ) ≥ E(σ) − E(σy) + 6 − 2h. (4.15)

In order to bound E(σ) − E(σy), we first note that by (2.9) we get

E(σ) − E(σy) = −2h −
∑

z∈{y}
(|Sσ (z) + h| − |Sσy (z) + h|). (4.16)

We distinguish, now, two cases. We first suppose that x �∈ {y}, i.e., the two sites x and
y are not nearest neighbors. It is easy to prove that −(|Sσ (y) + h| − |Sσy (y) + h|) = +2.
Moreover, note that the contribution to the sum (4.16) of all the sites in ∂{y}∩ (�+(B Aσ))c

is equal to +2 excepted for at most one site whose contribution is equal to −2h. Note, also,
that |∂{y} ∩ (�+(B Aσ))c| ≥ 3; hence, we have that E(σ) − E(σy) ≥ −2h + (2 − 2h) +
2 + 2 − 2h − 2, where the contribution of the site ∂{y} ∩ �+(B Aσ), which possibly exists,
has been bounded trivially by −2. The bound (4.13) follows immediately.
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Fig. 7 The three cases studied in the proof of the Lemma 4.4; on the left the not trivial one

Suppose, now, that x ∈ {y}, i.e., the two sites x and y are adjacent. The only not trivial
case, see Fig. 7, is the one in which both the sites x and y are at distance one from the set
�+(B Aσ). Since the plus spins associated to x and y are flipped by the iterative application
of the map A to σ , the spin associated to at least one of the two sites in ∂{x, y} ∩�+(B Aσ)

is equal to −1, see Fig. 7. Without loss of generality we let ∂{y} ∩ �+(B Aσ) = {y ′} and
σ(y ′) = −1. It is easy to prove that −(|Sσ (y) + h| − |Sσy (y) + h|) = +2, −(|Sσ (x) + h| −
|Sσy (x)+h|) ≥ −2h, −(|Sσ (y ′)+h|− |Sσy (y ′)+h|) ≥ −2, and −(|Sσ (z)+h|− |Sσy (z)+
h|) = 2 for each z ∈ ∂{y} \ {x, y ′}. Hence, by using (4.16) we get

E(σ) − E(σy) ≥ −2h + 2 − 2h − 2 + 2 + 2 = 4 − 4h. (4.17)

The bound (4.13) follows by (4.17) and (4.15).
Let, finally, σ ∈ S such that L(σ) ≥ 3. Let i a suitable integer such that L(Aiσ ) = 2. The

bound (4.13) follows easily by using the Lemma 4.1 and (4.13) applied to Aiσ . �

4.2 Energy Estimates for Rectangular Droplets

We first state and prove the following Lemma on some simple geometrical properties of
rectangles on the lattice.

Lemma 4.5 Let Qli,mi
, for i = 1, . . . , n, be pairwise disjoint rectangles with sides li ,mi ∈

N \ {0}, such that �i ≤ mi for i = 1, . . . , n, and semi-perimeter p := ∑n

i (�i + mi).

1. We have

1

4
p2 ≥

n∑

i=1

li mi. (4.18)

2. If there exists a positive integer k such that �i ≤ k − 1 and mi ≤ k for all i = 1, . . . , n, we
have

n∑

i=1

�imi ≤ 1

2
kp − 1

2

n∑

i=1

mi. (4.19)

3. If n ≥ 2 and li ≥ 2 then

1

4
p2 ≥

n∑

i=1

li mi + p. (4.20)

Proof of Lemma 4.5. Item 1: we have

1

4
p2 = 1

4

( n∑

i=1

(li + mi)

)2

≥ 1

4

n∑

i=1

(li + mi)
2 = 1

4

n∑

i=1

(li − mi)
2 +

n∑

i=1

li mi ≥
n∑

i=1

li mi.
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Item 2: we have

n∑

i=1

�imi = 2
n∑

i=1

1

2
limi ≤ 1

2

n∑

i=1

(k − 1)mi + 1

2

n∑

i=1

�ik ≤ 1

2
k

n∑

i=1

(�i + mi) − 1

2

n∑

i=1

mi

which implies (4.19). Item 3: note that

(
1

2

n∑

i=1

(li + mi)

)2

−
n∑

i

li mi = 1

4

(( n∑

i=1

(li + mi)

)2

− 4
n∑

i

li mi

)

= 1

4

( n∑

i

(li + mi)
2 − 4

n∑

i=1

li mi +
∑

i �=j

(li + mi)(lj + mj)

)

= 1

4

( n∑

i=1

(li − mi)
2 +

∑

i �=j

(li + mi)(lj + mj)

)

≥ 4

4

n∑

j=1

(lj + mj) = p

where in the second step we used n ≥ 2 and in the last step li ∧ mi ≥ 2. The bound (4.20)
follows. �

We introduce the notion of semi-perimeter of a multi-rectangular droplet. Let n ≥ 1 and
�1,m1, . . . , �n,mn integers such that 2 ≤ �1,m1, . . . , �n,mn ≤ L − 2, σ ∈ S a n-rectangular
droplet with sides �1,m1, . . . , �n,mn, we let

p(σ) :=
n∑

i=1

(�i + mi) (4.21)

be the semi-perimeter of the multi-rectangular droplet σ .

Lemma 4.6 Let �,m two integers such that 2 ≤ � ≤ m ≤ L − 2 and σ ∈ S a rectangular
droplet with sides � and m. If � ≤ λ − 1, we have

E(σ) − E(−1) > 8� > 0. (4.22)

If � ≤ λ − 1 and m ≥ λ + 1, we have

E(σ) − E(R) ≥ 4h(1 − δh) > 0 (4.23)

where we recall R has been defined above Proposition 3.2 and δh below (2.11).
Moreover, for n ≥ 1 integer, for any n-rectangular droplet η ∈ S with sides 2 ≤ �i ≤ mi

such that �i ≤ λ − 1 and mi ≤ λ for i = 1, . . . , n, we have that

E(η) − E(−1) > (4 − 2h)p(η) + 1

2

n∑

i=1

mi. (4.24)

Proof of Lemma 4.6. Suppose � ≤ λ − 1: by using (2.25) we have E(σ) − E(−1) =
−4h�m+8(�+m) = (8−4h�)+8�; since � ≤ λ−1, the lemma follows. Suppose � ≤ λ−1
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and m ≥ λ + 1, by using (2.25) we have E(σ) − E(R) = 4h(m − λ)[(λ − �) − δh], which
implies (4.23).

We finally prove (4.24). Recall that by hypothesis �i ≤ λ − 1 and mi ≤ λ for any i =
1, . . . , n; by definition of multi-rectangular droplets and by using (4.19) with k = λ, we
have

|�+(η)| ≤ λ

2
p(η) − 1

2

n∑

i=1

mi. (4.25)

Now, by using (2.25), (4.21), (4.19), and the fact that the support of a multi-rectangular
droplet is made of pairwise not interacting rectangles, we have that

E(η) − E(−1) = −4h|�+(η)| + 8p(η) ≥ p(η)(8 − 2hλ) + 1

2

n∑

i=1

mi

which implies (4.24) since λ < (2/h) + 1. �

4.3 Relations between Configurations in G and in Gc

Consider σ ∈ G and η ∈ Gc, in Lemma 4.7 we state a property relating the pluses in η to
those in B Aσ and we bound from below the transition rate �(σ,η) (see(2.20)).

Lemma 4.7 Let σ ∈ G and η /∈ G,

1. We have

|�+(η) \ �+(B A(σ))| ≥ 2. (4.26)

2. We have

�(σ,η) ≥
{

12 − 4h for L(σ) = 0

4 − 4h for L(σ) = 1.
(4.27)

Proof of Lemma 4.7. Item 1: the item follows from the definition of the subcritical set G.
Indeed, if |�+(η)\�+(B A(σ))| ≤ 1, we have that under the map A the positive spin outside
�+(B Aσ) is flipped, so that �+(B Aη) ⊆ �+(B Aσ). Hence η ∈ G, that is a contradiction.

Item 2: from (2.20) we get

�(σ,η) = 2
∑

z∈�:η(z)Sσ (z)<0

|Sσ (z) + h| ≥ 2
∑

z∈�\�+(B Aσ):η(z)Sσ (z)<0

|Sσ (z) + h|. (4.28)

If L(σ) = 0, by (4.26),(4.28), the theorem follows. Indeed, in the r.h.s of (4.28) there are
at least two terms corresponding to sites x and y such that η(x) = η(y) = 1, and Sσ (x) ≤
−3, Sσ (y) ≤ −3. If L(σ) = 1, from (4.26) there exist two sites

{x, y} ⊆ �+(η) \ �+(B Aσ). (4.29)

Note that, since L(σ) = 1, one has Sσ (x) ≤ −1 and Sσ (y) ≤ −1. From (4.28) we have
the bound

�(σ,η) ≥ 2(1 − h) + 2(1 − h) (4.30)

and the theorem follows, see also Fig. 1. �
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4.4 Proof of the Proposition 3.2

Let σ ∈ S and suppose B Aσ �= −1, there exist n(σ) ∈ N \ {0}, �i(σ ),mi(σ ) integers larger
than 2, and xi(σ ) ∈ � for i = 1, . . . , n(σ ) such that

�+(B Aσ) =
n(σ)⋃

i=1

Q�i(σ),mi (σ )(xi(σ )).

If B Aσ = −1 we shall understand n(σ) = 1, �1(σ ) = m1(σ ) = 0, and p(σ) = 0, see also
(4.21). Let σ ∈ S , we order the droplets in �+(B Aσ) so that �i(σ ) ∧ mi(σ ) ≥ λ for i =
1, . . . , k(σ ) and �i(σ ) ∧ mi(σ ) ≤ λ − 1 for i = k(σ ) + 1, . . . , n(σ ); note that for σ ∈ G we
have k(σ ) = 0, while for σ ∈ Gc we have k(σ ) ≥ 1. For the sake of simplicity, for σ ∈ Gc in
the sequel we shall let ri(σ ) := �i(σ ) − λ and qi(σ ) := mi(σ ) − λ for i = 1, . . . , k(σ ).

Before starting the proof of the Proposition 3.2 we sketch the main idea. We shall define
the subsets of the configuration space A5 ⊂ A4 ⊂ A3 ⊂ A2 ⊂ A1 ⊂ G, B2 ⊂ B1 ⊂ Gc, and
reduce the proof to the computation of E(η, ζ ) for η ∈ A5 and ζ ∈ B2 (see Fig. 8). We recall
(4.21), (4.12), (4.1), and let

A1 := {σ ∈ G : �i(σ ) ∨ mi(σ ) ≤ λ for i = 1, . . . , n(σ )}
A2 := {σ ∈ A1 : p(σ) ≤ 2λ + 4, L(σ ) ≤ 4λ + 42}
A3 := {σ ∈ A2 : p(σ) ≥ 2λ − 50}
A4 := {σ ∈ A3 : n(σ) = 1}
A5 := {σ ∈ A4 : p(σ) = 2λ − 1}

(4.31)

Fig. 8 Restricted sets on which we evaluate E(η, ζ ) in the proof of item 2 of Proposition 3.2
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and

B1 := {σ ∈ Gc : �i(σ ),mi(σ ) ≤ L − 2 for i = 1, . . . , n(σ )}

B2 := {σ ∈ B1 : 4hNB(σ) − 4h

k(σ)∑

i=1

(ri(σ ) + qi(σ ) + ri(σ )qi(σ )) ≤ 10 − 2h}. (4.32)

In order to bound E(η, ζ ) for η ∈ G and ζ ∈ Gc, we shall use the identity

E(η, ζ ) − E(−1) = [E(η) − E(Aη)] + [E(Aη) − E(B Aη)]
+ [E(B Aη) − E(−1)] + �(η, ζ ) (4.33)

which is a straightforward consequence of the definition (2.20). Depending on the choice of
η, the different terms in the r.h.s. of the identity (4.33) will be properly bounded in order to
get the theorem.

Proof of Proposition 3.2. Item 1. The proof is an immediate application of the definition of
the set G (see Sect. 3.2).

Items 2. Step 1. Let η ∈ G \ A1 and ζ ∈ Gc. There exists i ∈ {1, . . . , n(η)} such that
li (η) ∨ mi(η) ≥ λ + 1; hence, by using (4.33), (4.3), NB(η) ≥ 0, (4.22), and (4.23), we get

E(η, ζ ) − E(−1) ≥ [E(η) − E(Aη)] + [E(R) − E(−1)] + �(η, ζ ) (4.34)

where (4.22) and (4.23) have been applied to each non-interacting droplet in B Aσ to deduce
that E(B Aσ)−E(R) ≥ 0. Now, if L(η) = 0, by using (4.34), (4.2), NA(η) ≥ 0, (4.27), and
(3.24), we get

E(η, ζ ) − E(−1) > [E(R) − E(−1)] + 12 − 4h > 
.

On the other hand, if L(η) ≥ 1, by using (4.34), (4.13), (4.27), and (3.24), we get

E(η, ζ ) − E(−1) > 6 − 2h + [E(R) − E(−1)] + 4 − 4h > 
.

Step 2. Let η ∈ A1 \A2 and ζ ∈ Gc. By using (4.33), (4.3), and NB(η) ≥ 0, we get

E(η, ζ ) − E(−1) ≥ [E(η) − E(Aη)] + [E(B Aη) − E(−1)] + �(η, ζ ). (4.35)

Now, suppose p(η) ≥ 2λ+ 5, by using (4.35), (4.24), �(η, ζ ) ≥ 0, the definition (2.11), and
(2.13), we get

E(η, ζ ) − E(−1) > (4 − 2h)(2λ + 5) > 8λ + 12 − 14h > 


provided h > 0 is chosen smaller than 1/6. Suppose, finally, L(η) ≥ 4λ+43. If B Aη �= −1,
by using (4.22) we get E(B Aη) − E(−1) ≥ 0; note that this bound holds trivially also in
the case B Aη = −1. Hence, by using this bound, (4.35), (4.13), and (2.13), we get

E(η, ζ ) − E(−1) > 10 − 6h + (2 − 10h)(4λ + 43) > 
.

Step 3. Let η ∈ A2 and ζ ∈ Gc \ B1. There exists i ∈ {1, . . . , k(ζ )} such that �i(ζ ) ∨
mi(ζ ) > L−2. Since η ∈ A2 we have that p(η) ≤ 2λ+4 and L(η) ≤ 4λ+42, then by using
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(4.19) with k = λ we have |�+(η)| ≤ |�+(B Aη)|+L(η) ≤ λp(η)/2+L(η) ≤ λ2 +6λ+42.
Given the magnetic field h > 0, the number of plus spins in η is bounded by a finite number;
then we can choose L = L(h) so large that there exist an horizontal and a vertical stripe
winding around the torus with arbitrarily large width and such that η(x) is equal to −1 for
each x in such two stripes. Since in B Aζ , there exists a rectangular droplet of pluses with
one of the two side lengths larger or equal to L − 2; we choose L so large that �(η, ζ ) > 
.
By using, finally, (2.20) we get E(η, ζ )−E(−1) > 
, once we remark that E(η)−E(−1) ≥
E(B Aη) − E(−1) ≥ 0.

Step 4. Let η ∈ A2 and ζ ∈ B1 \ B2. By using Lemma 4.1 and NA(ζ ) ≥ 0, we have the
bound

E(ζ ) − E(−1) ≥ E(B Aζ) − E(−1) + 4hNB(ζ ). (4.36)

By (2.25) and (2.12) it follows

E(B Aζ) − E(−1) = −4h

n(ζ )∑

i=1

(λ + ri(ζ ))(λ + qi(ζ )) + 8
n(ζ )∑

i=1

(2λ + ri(ζ ) + qi(ζ ))

= n(ζ )(
 − 10 + 6h) −
n(ζ )∑

i=1

(ri(ζ ) + qi(ζ ))(4hλ − 8)

− 4n(ζ )(hλ − 2) − 4h

n(ζ )∑

i=1

ri(ζ )qi(ζ )

> (
 − 10 + 2h) − 4h

n(ζ )∑

i=1

(ri(ζ ) + qi(ζ ) + ri(ζ )qi(ζ )) (4.37)

where in the last inequality we used (2.11) and the fact that 
 > 10 − 6h. Hence, by (4.36)
and (4.37), we have

E(ζ ) − E(−1) ≥ 
 − (10 − 2h) + 4hNB(ζ ) − 4h

n(ζ )∑

i=1

(ri(ζ ) + qi(ζ ) + ri(ζ )qi(ζ )).

Since ζ ∈ B2 \ B1, we get E(ζ ) − E(−1) > 
. Finally, by the inequality in (2.19), we get
E(η, ζ ) − E(−1) > 
.

Step 5. Let η ∈ A2 \ A3 and ζ ∈ B2. We note now that E(B Aη) − E(−1) ≥ 0, which
is trivial if B Aη = −1, otherwise it follows immediately from (4.22). By using this bound,
(4.33), Lemma 4.1, NA(η) ≥ 0, and NB(η) ≥ 0, we get

E(η, ζ ) − E(−1) ≥ �(η, ζ ). (4.38)

We find, now, a lower bound to �(η, ζ ) by multiplying the minimum quantum
2(1 − h), see Fig. 1, times the number of flips against the drift in the transition from η

to ζ . More precisely,

�(η, ζ ) ≥ 2(1 − h) |{x ∈ � : η(x)Sη(x) > 0, η(x)ζ(x) < 0}|
≥ 2(1 − h)(|�+(ζ )| − |�̄(η)|) (4.39)
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with

�̄(η) := �+(B Aη) ∪ �+(η) \ �+(B Aη) (4.40)

where we recall the closure of a subset of the lattice has been defined in Sect. 2.1.
Recalling that the application of the map A does not add pluses, the number of plus spins

in the configuration ζ can be bounded from below by adding the number of pluses in B Aζ

to the branch L(ζ ) of ζ and subtracting the number of pluses NB(ζ ) added by the bootstrap
map B . Namely, we have

|�+(ζ )| ≥ n(ζ )λ2 + λ

n(ζ )∑

i=1

(ri(ζ ) + qi(ζ )) +
n(ζ )∑

i=1

ri(ζ )qi(ζ ) − NB(ζ ) + L(ζ ).

Now, by using that ζ ∈ B2, (2.11), and L(ζ ) ≥ 0, we get

|�+(ζ )| ≥ λ2 +
n(ζ )∑

i=1

(λ(ri(ζ ) + qi(ζ )) − ri(ζ ) − qi(ζ )) − 10 − 2h

4h
+ L(ζ )

≥ λ2 − 5

4
λ +

n(ζ )∑

i=1

(λ − 1)(ri(ζ ) + qi(ζ )) ≥ λ2 − 5

4
λ (4.41)

where we also used λ − 1 ≥ 0.
We next bound from above |�̄(η)|. We first note that by using (4.40) and (4.12) we get

|�̄(η)| ≤ |�+(B Aη)| + 5L(η). (4.42)

Now, suppose that �+(B Aη) �= −1; by using (4.19) with k = λ and exploiting η ∈ A2, we
conclude

|�̄(η)| ≤ 1

2
λp(η) + 20λ + 210. (4.43)

Suppose, on the other hand, that �+(B Aη) = −1. By using (4.42), we get |�̄(η)| ≤
5L(η) ≤ 20λ + 210; hence the bound (4.43) holds since in this case p(η) = 0.

We finally bound �(η, ζ ) by using the preliminary inequalities (4.39), (4.41), and (4.43);
we have

�(η, ζ ) ≥ 2(1 − h)

[
λ2 − 85

4
λ − 1

2
λp(η) − 210

]
. (4.44)

Recall η ∈ A2 \ A3, then p(η) ≤ 2λ − 51; hence by using (4.38), (4.44), and (2.13), we
get

E(η, ζ ) − E(−1) > 
 + 1

h
− 53

2
+ O(h) > 


where in the last inequality we have chosen h > 0 small enough.
Step 6. Let η ∈ A3 \A4 and ζ ∈ B2. By using (4.33), Lemma 4.1, NA(η) ≥ 0, NB(η) ≥ 0,

(2.25), and �(η, ζ ) ≥ 0, we get

E(η, ζ ) − E(−1) ≥ E(B Aη) − E(−1) = −4h|�+(B Aη)| + p(η). (4.45)
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Now, since η ∈ A3 \A4, we can use (4.20) to obtain

E(η, ζ ) − E(−1) ≥ −h(p(η))2 + (4h + 8)p(η). (4.46)

Finally, by exploiting the properties of the parabola on the right-hand side of (4.46) and
recalling that for η ∈ A3 \ A4 the semi-perimeter satisfies the bounds 2λ − 50 ≤ p(η) ≤
2λ + 4, it is immediate to prove that the parabola attains its minimum at p(η) = 2λ − 50;
hence, by using (4.46) and (2.12), we get E(η, ζ ) − E(−1) > 
 for h > 0 small enough.

Step 7. Let η ∈ A4 \ A5 and ζ ∈ B2. By using (4.33), (4.3), and NB(η) ≥ 0, we get the
bound

E(η, ζ ) − E(−1) ≥ [E(η) − E(Aη)] + [E(B Aη) − E(−1)] + �(η, ζ ). (4.47)

Since η ∈ A4 \ A5, we have that n(η) = 1 and then 2λ − 50 ≤ p(η) ≤ 2λ − 2. We repeat,
now, the same argument used at Step 6, but, since n(η) = 1, we have to use (4.18) instead of
(4.20); we then get

E(η, ζ ) − E(−1) ≥ [E(η) − E(Aη)] + [
 − 10 + O(h)] + �(η, ζ ). (4.48)

Moreover, since n(η) = 1 and p(η) ≤ 2λ − 2, by using the same arguments developed in
the proof of (4.26), we get

|�+(ζ ) \ �+(B Aη)| ≥ 3. (4.49)

To complete the proof of the Step 7, we distinguish four cases by means of the parameter
L(η). Consider, first, the case L(η) ≥ 3; by using (4.48), (4.13), and �(η, ζ ) ≥ 0, it follows
immediately E(η, ζ ) − E(−1) > 
.

Consider, now, the case L(η) = 2. We first note that by using (4.48) and (4.13) we get

E(η, ζ ) − E(−1) ≥ 10 − 6h + [
 − 10 + O(h)] + �(η, ζ ) ≥ 
 + �(η, ζ ) + O(h). (4.50)

The result E(η, ζ )−E(−1) > 
 will then be proven once we shall have obtained the bound
�(η, ζ ) ≥ 2(1 − h).

To prove such a bound, we note that there exist x, y ∈ �+(η) \ �+(B Aη); since x, y ∈
� \ �+(B Aη), by the definition of the two maps A and B , it follows that they cannot be
both stable w.r.t. η (see Sect. 3). If one of the two sites x and y, say x, is stable w.r.t. η,
it is immediate to prove that x ∈ ∂�+(B Aη) and {y} = ∂{x} \ �+(B Aη). Since x and
y are nearest neighbors, it follows that there exist no site in �−(η) \ �+(B Aη) which is
unstable w.r.t. η; hence, by using (4.49) and (2.20), it follows that �(η, ζ ) ≥ 2(1 − h).
We consider, now, the case when both x and y are unstable w.r.t. η. Suppose that either
ζ(x) = +1 or ζ(y) = +1; from (2.20) we have �(η, ζ ) ≥ 2(1 − h). On the other hand, if
ζ(x) = ζ(y) = −1, it is easy to see that, since L(η) = 2, we have |�−

u (η) \ �+(B Aη)| ≤ 1
(recall the definition (3.3)). Then, by using (4.49), it follows that � ≥ 2(1 − h).

Consider, now, the case L(η) = 1. We first note that, by using (4.48) and (4.13), we get

E(η, ζ )−E(−1) ≥ 6−2h+[
−10+O(h)]+�(η, ζ ) ≥ 
−4+�(η, ζ )+O(h). (4.51)

The result E(η, ζ )−E(−1) > 
 will then be proven once we shall have obtained the bound
�(η, ζ ) ≥ 3 · 2(1 − h).

To prove such a bound we let x the site such that {x} := �+(η) \ �+(B Aη). Suppose
ζ(x) = +1; since x is unstable w.r.t. η, by (2.20) and (4.49), we have �(η, ζ ) ≥ 2(1 − h) +
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2(1−h)+2(1−h). On the other hand, suppose ζ(x) = −1; since |�−
u (η)\�+(B Aη)| = 0,

by (4.49) it follows that �(η, ζ ) ≥ 2(1 − h) + 2(1 − h) + 2(3 − h).
Consider, finally, the case L(η) = 0. Recall (2.20); the condition (4.49) implies that

�(η, ζ ) ≥ 3 · 2(3 − h). Hence, by using also (4.48), (4.2), and NA(η) ≥ 0, we get

E(η, ζ ) − E(−1) ≥ 
 − 10 + O(h) + 3 · 2(3 − h) > 
.

Step 8. Let η ∈ A5 and ζ ∈ B2. We remark that, since p(η) = 2λ − 1 and �1 ∨ m1 ≤ λ,
we have B Aη ∈ R. Hence, by using (4.33), (4.3), and (3.24), we get

E(η, ζ ) − E(−1) ≥ [E(η) − E(Aη)] + 4hNB(η) + [
 − 10 + 6h] + �(η, ζ ). (4.52)

To complete the proof of Step 8, we distinguish four cases by means of the parameter
L(η). Consider, first, the case L(η) ≥ 3; by using (4.52), (4.13), NB(η) ≥ 0, and �(η, ζ ) ≥
0, we get

E(η, ζ ) − E(−1) ≥ 12 − 16h + 
 − 10 + 6h > 
.

Consider, now, the case L(η) = 2; we let x, y be the two sites in �+(η) \ �+(B Aη). We
first note that, by using the inequalities (4.52) and (4.13), we get the bound

E(η, ζ ) − E(−1) ≥ 4hNB(η) + 
 + �(η, ζ ). (4.53)

Suppose, first, NB(η) ≥ 1; by (4.53) and �(η, ζ ) ≥ 0, we immediately get E(η, ζ ) −
E(−1) > 
. We are then left with the case NB(η) = 0, i.e., �+(η) ⊃ �+(B Aη); by us-
ing (4.53), the result E(η, ζ ) − E(−1) > 
 will be proven once we shall have obtained the
bound �(η, ζ ) ≥ 2(1 − h).

We note that |�+
s (η) \ �+(B Aη)| ≤ 1, indeed if by the way of contradiction x and

y belonged both to �+
s (η) \ �+(B Aη), then it should necessarily be x, y ∈ ∂�+(B Aη)

and d(x, y) = 1, namely, there would be a two-site protuberance added to the λ × (λ − 1)

rectangle of pluses which is present in η. Hence, we would have η ∈ C ⊂ Gc, which is a
contradiction.

Suppose |�+
s (η) \ �+(B Aη)| = 1 and let x be the site in �+

s (η) \ �+(B Aη); since

x is stable w.r.t. η, we must necessarily have x ∈ ∂�+(B Aη) and y ∈ ∂{x} \ �+(B Aη).
Note, also, that this implies |�−

u (η) \ �+(B Aη)| = 0. Thus, for ζ(y) = +1, in the sum in
(2.20) there is at least the term corresponding to y; then we have �(η, ζ ) ≥ 2(1 − h). On
the other hand, if it were ζ(y) = −1, recalling (4.26) we would have that in the sum in
(2.20) there is at least a term corresponding to the flip of the spin associated with a site in
�−(η) which is stable w.r.t. η, hence we would have �(η, ζ ) ≥ 2(1 − h). Suppose, finally,
|�+

s (η) \ �+(B Aη)| = 0; it is immediate to prove that |�−
u (η) \ �+(B Aη)| ≤ 1. Then we

get �(η, ζ ) ≥ 2(1 − h), since from (4.26) it follows that in the sum in (2.20) there is at least
a term corresponding to the persistence of the spin associated with a site in �+

u (η) or to the
flip of the spin associated with a site in �−(η) which is stable w.r.t. η.

Consider, now, the case L(η) = 1. We let x be the site in �+(η) \ �+(B Aη), note that x

in unstable w.r.t. η and w is stable w.r.t. η for any w ∈ �−(η) \ �+(B Aη). We remark that
by using (4.52), (4.13), (4.3), and NB(η) ≥ 0, we get the bound

E(η, ζ ) − E(−1) ≥ 
 − 4 + 4h + �(η, ζ ) (4.54)

and distinguish different cases depending on the number of plus spins in the configuration
ζ which are associated to sites outside the support of the configuration B Aη, that is on
|�+(ζ ) \ �+(B Aη)| ≥ 2, see (4.26).
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Suppose, first, |�+(ζ ) \�+(B Aη)| ≥ 3; since x ∈ �+
u (η) and w is stable w.r.t. η for any

w ∈ �−(η) \ �+(B Aη), we have �(η, ζ ) ≥ 3 · 2(1 − h), for in the sum in (2.20) there are
at least three terms.

We are left with the case |�+(ζ ) \ �+(B Aη)| = 2; we let {y, z} := �+(ζ ) \ �+(B Aη)

and notice that it must be necessarily y, z ∈ ∂�+(B Aη) and d(y, z) = 1, otherwise it would
be ζ ∈ G. Suppose, first, ζ(x) = −1; since x �= y, x �= z, and y and z are nearest neighbors,
it follows that at most one of the two sites y and z is nearest neighbor of x. Then, since
in the sum (2.20) there are at least two terms and one of them is greater or equal to 2(3 −
h), we have �(η, ζ ) ≥ 2(1 − h) + 2(3 − h). By the previous inequality and (4.54) we get
E(η, ζ )−E(−1) > 
. Suppose, finally, ζ(x) = +1; without loss of generality we let y = x.
Since z ∈ ∂{x} ∩ ∂�+(B Aη), by (2.20) we have �(η, ζ ) ≥ 2(1 − h) + 2(1 − h), with one
of the two terms corresponding to the persistence of the plus spin associated to x in η and
the other corresponding to the flip of the minus spin associated to z in η. By the previous
inequality and (4.54) we get E(η, ζ ) − E(−1) ≥ 
.

Consider, finally, the case L(η) = 0. By using (4.52), (4.2), NA(η) ≥ 0, NB(η) ≥ 0, and
(4.27), we get

E(η, ζ ) − E(−1) ≥ 
 − 10 + 6h + 12 − 4h > 
.

Item 3. Suppose ζ ∈ C and η ∈ π(ζ ), by using (2.9) and (2.20) it follows E(η, ζ ) −
E(−1) = 
.

Conversely, suppose η ∈ G and ζ ∈ Gc such that E(η, ζ ) − E(−1) = 
. By using the
results in the proof of Item 2 above, see in particular Step 8, we have that it must be
necessarily η ∈ A5, ζ ∈ B2, L(η) = 1, |�+(ζ ) \ �+(B Aη)| = 2, and ζ(x) = +1, with x

such that {x} = �+(η) \ �+(B Aη), indeed for any different choice of η and ζ it has be
proven E(η, ζ )−E(−1) > 
. For configurations η and ζ as above we have also proven that
B Aη ∈ R, that �(η, ζ ) ≥ 2 · 2(1 −h), and that there exists z ∈ ∂{x}∩ ∂�+(B Aη) such that
ζ(z) = +1.

Now, by using B Aη ∈ R, �(η, ζ ) ≥ 2 · 2(1 − h), (4.33), (4.13), (4.3), and (3.24), we get

E(η, ζ ) − E(−1) ≥ 6 − 2h + 4hNB(η) + 
 − 10 + 6h + 2 · 2(1 − h) = 
 + 4hNB(η).

If it were NB(η) ≥ 1 it would follow E(η, ζ ) − E(−1) > 
, then it must necessarily be
NB(η) = 0.

By the above characterization of η we have that η ∈ P ; then, by using (4.33) and the
definition of the map A we get the following expression for the communication energy
E(η, ζ ):

E(η, ζ ) − E(−1) = 6 − 2h + 
 − 10 + 6h + �(η, ζ ) = 
 − 4 + 4h + �(η, ζ ).

Since ζ(x) = ζ(z) = +1, we have that �(η, ζ ) = 2 · 2(1 − h) if and only if ζ(w) = +1 for
all w ∈ �+(B Aη). We then have that ζ ∈ C and η ∈ π(ζ ). �

Appendix: Review of Results in [9]

The proof of Theorem 2.1 is based on general results in [9, Theorem 4.1, 4.9, and 5.4]
concerning the hitting time on the set of global minima of the energy for the chain started at
a metastable state. We restate those results in our framework which is slightly different from
the one considered in that paper (see the discussion at the beginning of Sect. 2.8).
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Recall (2.27). Let Ss be the set of global minima of the energy (2.9). For any σ ∈ S ,
let Iσ := {η ∈ S : E(η) < E(σ)} be the set of states with energy below E(σ) and Vσ :=
�(σ,Iσ ) − E(σ) be the stability level of σ . Set Vσ := ∞ if Iσ = ∅. We define the set
of metastable states Sm := {η ∈ S : Vη = maxσ∈S\Ss Vσ }. We say that W(η, ζ ) ⊂ S is a
gate for the transition from η ∈ S to ζ ∈ S if and only if the two following conditions are
satisfied: (1) for any σ ∈ W(η, ζ ) there exist a path ω ∈ �(η, ζ ), such that �ω = �(η, ζ ),
and i ∈ {2, . . . , |ω|} such that ωi = σ and E(ωi−1,ωi) = �(η, ζ ); (2) ω ∩ W(η, ζ ) �= ∅ for
any path ω = �(η, ζ ) such that �ω = �(η, ζ ). A function f : β ∈ R → f (β) ∈ R is called
super-exponentially small (SES) in the limit β → ∞ if and only if limβ→∞(1/β) logf (β) =
−∞. Given σ ∈ S and A ⊂ S , finally, recall the definition of hitting time τ σ

A given in (2.4)
and the notation Eσ introduced just before it.

Theorem A.1 (restatement of Theorem 4.1 in [9]) Let σ ∈ Sm; for any δ > 0, there exist
β0 > 0 and K > 0 such that, for any β > β0,

Pσ (τ σ
Ss < eβVσ −βδ) < e−Kβ (A.1)

and

Pσ (τ σ
Ss > eβVσ +βδ) = SES. (A.2)

Theorem A.2 (restatement of Theorem 4.9 in [9]) Let σ ∈ Sm, then

lim
β→∞

1

β
log Eσ [τ σ

Ss ] = Vσ . (A.3)

Theorem A.3 (restatement of Theorem 5.4 in [9]) Let σ,η ∈ S; consider a gate W for the
transition from σ to η. Then there exists c > 0 such that

Pσ (τ σ
W > τσ

η ) ≤ e−βc (A.4)

for β large enough.

The proof of Theorems A.1–A.3 can be achieved by arguments much similar to the one
developed in [9]. To this purpose the main ingredients are the revised definition of cycle and
the revised statement of [9, Theorem 2.17] (see also [12, Theorem 6.23]) and [9, Theorem
3.1].

Let A ⊂ S , consider �(A,Ac), we say that A is a cycle if and only if

max
σ,η∈A

�(σ,η) < �(A,Ac). (A.5)

Let σ ∈ S; we say that the singleton {σ } ⊂ S is a trivial cycle if and only if it is not a cycle.
Given a cycle A ⊂ S , we denote by F(A) the set of the minima of the energy in A, i.e.,

F(A) := {σ ∈ A : min
η∈A

E(η) = E(σ)}. (A.6)

We also write E(F(A)) = E(σ) with σ ∈ F(A). Noted that �(σ,Ac) = �(σ ′,Ac) for any
σ,σ ′ ∈ F(A), we pick σ ∈ F(A) and set �(A) := �(σ,Ac).
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Theorem A.4 (restatement of Theorem 2.17 [9]) Let A ⊂ S be a cycle. For any σ ∈ A,
η ∈ Ac, ε, ε ′ > 0, δ ∈ (0, ε), and β > 0 large enough

Pσ (τ σ
Ac < eβ[�(A)−E(F(A))]+βε; τ σ

Ac = τ σ
η ) ≥ e−β[�(η,A))−�(A)]−βε′

(A.7)

and

Pσ (τ σ
Ac > eβ[�(A)−E(F(A))]−βε) ≥ 1 − e−βδ. (A.8)

Moreover, there exists κ > 0 such that for any σ,σ ′ ∈ A and β large enough

Pσ (τ σ
σ ′ < τσ

Ac) ≥ 1 − e−βκ . (A.9)

Equation (A.7) is a bound from below to the probability that the chain exits a cycle A

in a time smaller than the exponential of β times the height �(A) − E(F(A)) of the cycle
plus ε. In particular, it is stated that for such a probability the estimate is optimal when the
exit from the cycle is achieved by touching a configuration η such that �(η,A) is equal to
�(A). In this case, for any ε′, provided β is chosen large enough, such a probability is larger
than exp{−βε ′}. Equation (A.8) is a bound from below to the probability that the chain exits
a cycle A in a time larger than the exponential of β times the height �(A) − E(F(A)) of
the cycle minus ε; such a probability is larger than 1 − exp{−βδ} with δ ∈ (0, ε). Equation
(A.9) is a bound from below to the probability that the chain started at σ ∈ A visits another
configuration σ ′ belonging to the cycle A before exiting it; such a probability is larger than
1 − exp{−βκ} with κ > 0 not depending on σ and σ ′.

Before stating the revised version of [9, Theorem 3.1], we introduce the concept of
metastable state at level V ∈ R. We call metastable set at level V ∈ R the set of all states
with stability level strictly larger than V , i.e., SV := {σ ∈ S : Vσ > V }. Any σ ∈ SV is such
that for any path ω starting from σ and ending in a configuration with energy lower than
E(σ), the quantity �ω −E(σ), that is the energy level reached along the path and measured
with respect to σ , is lower than V .

Theorem A.5 (restatement of Theorem 3.1 in [9]) For any ε > 0 and β > 0 large enough

sup
σ∈S

Pσ (τ σ
SV

> eβV +βε) = SES. (A.10)

Equation (A.10) states that the probability that the chain started at σ ∈ S visits a configu-
ration with metastability level V ∈ R in a time larger than the exponential of β times V plus
ε is super-exponentially small in β .

The proof of Theorem A.5 can be achieved by repeating the same arguments developed
in [9] and based on [9, Theorem 2.17]. The proof of Theorem A.4 can be achieved by
repeating the same arguments quoted in [9] and developed in the proof of [12, Theorem 6.23]
(see also [11, Proposition 3.7]). In particular, in the proof of (A.8), a revised version of the
so called reversibility property [11, Lemma 3.1] is needed.

Lemma A.6 Let A ⊂ S be a cycle. For any σ ∈ F(A) and ε > 0, there exist β0 > 0 and
c > 0, such that for any β ≥ β0,

Pσ

(
τ σ
Ac ≤ eβ[�(A)−E(F(A))]−βε

) ≤ e−c β . (A.11)
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To prove Lemma A.6 we develop an argument much similar to the one proposed by
Olivieri and Vares to prove [12, Lemma 6.22]. The difference between the two cases is
in the fact that the Hamiltonian of the model (2.1) of the present paper depends on the
inverse temperature β , while [12, Lemma 6.22] refers to a model (see [12, Condition R
in Chapter 6]) with Hamiltonian not depending on the temperature. Note, also, that the
reversibility statement (A.11) is given in terms of energy-like quantities not depending on
β; on the other hand in the proof of the lemma the key property is the reversibility of the
dynamics w.r.t. the Hamiltonian (2.5).

Proof of Lemma A.6. First of all we make explicit how hamiltonian-like quantities differ
from the corresponding energy-like quantities multiplied times β . More precisely, given
σ,η ∈ S , we have

H(σ) = β E(σ) −
∑

x∈�

log
[
1 + e−2β|Sσ (x)+h|] + |�| log 2 (A.12)

and

H(σ,η) = βE(σ,η) + |�| log 2. (A.13)

The equality (A.13) follows easily from (A.12) and (2.23). We prove, now, (A.12). Using
(2.5), (2.9), and recalling that coshx = cosh(−x) for any x ∈ R, we have that

H(σ) − β(σ) = −
∑

x∈�

log cosh(β|Sσ (x) + h|) + β
∑

x∈�

|Sσ (x) + h|

= −
∑

x∈�

[log cosh(β|Sσ (x) + h|) − log exp(β|Sσ (x) + h|)]

= −
∑

x∈�

log
eβ|Sσ (x)+h| + e−β|Sσ (x)+h|

2eβ|Sσ (x)+h| = −
∑

x∈�

log
1 + e−2β|Sσ (x)+h|

2

which yields (A.12).
Consider, now, an integer T ≥ 2; recalling that the chain is reversible with respect to the

Gibbs measure μ defined above (2.5), we have that

Pσ (τAc ≤ T ) =
∑

ξ∈Ac

[
p(σ, ξ) +

T −1∑

n=1

∑

ξ1,...,ξn∈A

p(σ, ξ1) · · ·p(ξn−1, ξn)p(ξn, ξ)

]

=
∑

ξ∈Ac

[
p(σ, ξ) +

T −1∑

n=1

∑

ξ1,...,ξn∈A

e−[H(ξn)−H(σ)p(ξn, ξn−1) · · ·p(ξ1, σ )p(ξn, ξ)

]

(A.14)

where the detailed balance (2.6) has been used to invert the order of the configurations in the
terms p(σ, ξ1), . . . , p(ξn−1, ξn). By using the definition (2.17) of transition Hamiltonian, we
have that exp{−[H(ξn) − H(σ)]}p(ξn, ξ) = exp{−[H(ξn, ξ) − H(σ)]}. Noting, also, that

∑

ξ1,...,ξn−1∈A

p(ξn, ξn−1) · · ·p(ξ1, σ ) = Pσ (σn = ξn)
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we have

Pσ (τAc ≤ T ) =
∑

ξ∈Ac

[
e−[H(σ,ξ)−H(σ) +

T −1∑

n=1

∑

ξn∈A

e−[H(ξn,ξ)−H(σ)
Pσ (σn = ξn)

]

≤ eH(σ)
∑

ξ∈Ac

[
e−H(σ,ξ) +

T −1∑

n=1

∑

ξn∈A

e−H(ξn,ξ)
]

= eH(σ)
∑

ξ∈Ac

[
e−H(σ,ξ) + (T − 1)

∑

ζ∈A

e−H(ζ,ξ)

]
≤ eH(σ)T

∑

ζ∈A,ξ∈Ac

e−H(ζ,ξ)

which yields

Pσ (τAc ≤ T ) ≤ eH(σ) T |A| |Ac| max
ζ∈A,ξ∈Ac

e−H(ζ,ξ) = eH(σ)T |A||Ac|e−minζ∈A,ξ∈Ac H(ζ,ξ).

(A.15)
By using, finally, (A.12), (A.13), and (A.15), we get

Pσ (τAc ≤ T ) ≤ eβE(σ)T |A||Ac|e−minζ∈A,ξ∈Ac E(ζ,ξ) exp

{
−

∑

x∈�

log
[
1 + e−2β|Sσ (x)+h|]

}
.

(A.16)
Since A is a cycle, we have that minζ∈A,ξ∈Ac E(ζ, ξ) = �(A). Hence, remarked that

0 < exp

{
−

∑

x∈�

log
[
1 + e−2β|Sσ (x)+h|]

}
≤ (1 + exp{−2β(5 + h)})−|�| ≤

(
3

2

)|�|

for β large enough, the bound (A.8) follows once we take T = eβ[�(A)−E(F(A))]−βε . �
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